Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интересно ли Вам получить консультацию специалиста и персональную программу питания?


Уи́льям Ро́уэн Га́мильтон (англ. William Rowan Hamilton; 4 августа 1805 — 2 сентября 1865) — выдающийся ирландский математик и физик XIX века.

Содержательный мемуар «On a general method in Dynamics», помещенные в «Philosophical Transactions» в 1834—1835 годах, заключает в себе самые важные открытия по механике и теории интегрирования систем дифференциальных уравнений, развитые потом Якоби. В этой работе Гамильтон привел систему дифференциальных уравнений (второго порядка) движущейся материальной системы к удвоенному числу дифференциальных уравнений первого порядка, представленных в каноническом виде, и открыл новый метод получения решения этих уравнений, заключающийся в том, что нужно найти полный интеграл некоторого дифференциального уравнения с частными производными первого порядка и тогда искомые решения составятся по некоторым общим формулам без каких бы то ни было интегрирований.

Этот же мемуар указал возможность получения дифференциальных уравнений движения, исходя из нового принципа, названного принципом Гамильтона, являющегося развитием принципа наименьшего действия, установленного ранее Мопертюи, Эйлером и Лагранжем. Созданная им гамильтонова динамика оказалась в XX веке фундаментом теории микромира.

Гамильтону же принадлежит введение в механику особого наглядного приема изображения изменений величин и направлений скорости точки, совершающей какое-либо прямо— или криволинейное движение.

1837: аксиоматическая теория комплексных чисел как пар вещественных.

В ходе исследований Гамильтон попутно ввёл понятие векторного поля и создал основы векторного анализа. Он ввел векторное произведение, предложил оператор набла. Интересно отметить, что оба главных открытия Гамильтона — новая формулировка механики и кватернионы — сыграли существенную роль в XX веке при возникновении квантовой механики, причем эта роль была не случайна. Во всяком случае, механику Гамильтон сознательно сформулировал в виде классического (коротковолнового) предела волновой теории (аналогично тому, как в его время геометрическая оптика была осознана как коротковолновый предел волновой оптики).

Кто хочет снизить вес

И научиться правильно питаться!

Заполните, пожалуйста, анкету,

нам очень важно ваше мнение!

 

Как Вы считаете, влияет ли питание на наше самочувствие и вес?

r Да. r Нет.

На что Вы обращаете внимание при выборе продуктов?

r Цена

r Качество

r Срок годности

r Состав (натуральность продуктов)

r Пищевая/ энергетическая ценность (калории, белки, жиры, углеводы)

Довольны ли Вы на сегодняшний день своим весом и самочувствием?

r Да. r Нет.

Если нет, что беспокоит?

r Проблемы с самочувствием (пищеварение, сердце, суставы, давление, сахарный диабет)

r Лишний вес

r Недостаток веса

Интересно ли Вам получить консультацию специалиста и персональную программу питания?

r Да. r Нет.

Мы благодарим Вас за участие!

Для всех участников анкетирования

Консультация специалиста и вводное занятие

Группы поддержки в подарок!

Имя __________________________________________

Возраст ______________ Конт.тел. _____________

 

 

ВМЕСТЕ МЫ ДОБЬЕМСЯ ЛУЧШИХ РЕЗУЛЬТАТОВ!

ДОРОГИЕ СОСЕДИ!

Теперь и в нашем районе

открыта Группа Поддержки для тех,




<== предыдущая лекция | следующая лекция ==>
Методы построения гамильтоновых циклов в графе | Задания для юного гримёра. Мы благодарим Вас за участие!

Дата добавления: 2015-10-01; просмотров: 352. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия