Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Более сложные модели освещения





Когда мы рассматривали алгоритмы удаления невидимых линий, предполагалось, что сцена включает только непрозрачные объекты. В простой модели освещения тоже речь шла о непрозрачных поверхностях. Теперь можно усложнить задачу, включив в модель не только отражение света, но и преломление.

При переходе луча из одной среды в другую его направление изменяется согласно закону Синеллиуса: преломленный луч лежит в плоскости, образуемой нормалью к плоскости и падающим лучом, а углы, образуемые лучами с нормалью, связаны формулой

где - показатели преломления двух сред (рис. 10.7). Пропускание света также может быть диффузным (если часть энергии света рассеивается средой) или направленным. В первом случае мы имеем дело с полупрозрачными телами, которые изменяют окраску видимых сквозь них объектов. Во втором случае тело является прозрачным, и оно визуально обнаруживается только благодаря искажениям объектов за счет преломления лучей.

 

Рис. 10.7. Преломленный и отраженный лучи

Рис. 10.8. Преломление в призме

При наличии в пространственной сцене прозрачных или полупрозрачных объектов надо учитывать, что изображение других объектов будет отличаться от обычной проекции на картинную плоскость (рис. 10.8). Эти эффекты хорошо знакомы всем, кто сталкивался с различными линзами. Для построения изображения таких сцен целесообразно использовать алгоритмы с обратной трассировкой лучей.

Для изображения полупрозрачных поверхностей без учета преломления можно ввести так называемый коэффициент прозрачности , который позволяет смешивать интенсивности для видимой поверхности и той, что расположена за ней:

При поверхность непрозрачна, при - полностью прозрачна. Для полупрозрачных тел необходимо учитывать их объемную структуру.

Устранение ступенчатости (антиэлайзинг)

При построении растрового образа линий (см. лекцию 9) мы сталкиваемся с эффектом ступенчатости, связанным с дискретизацией непрерывного объекта. Искажение идеального образа происходит потому, что из всего множества точек мы выбираем только те, которые оказываются ближе всего к центру элемента растра, и инициализируем этот элемент.

Рис. 10.9. Распределение весов при увеличении разрешения в 4 раза

Рис. 10.10. Распределение весов при увеличении разрешения в 16 раз

Для предотвращения сильных искажений в этом случае можно, во- первых, повышать разрешение растра, что позволяет отображать всё более мелкие детали объектов. Но у этого подхода есть свои чисто физические ограничения. Второй подход заключается в том, что растр рассчитывается с более высоким разрешением, а изображается с более низким - путем усреднения атрибутов пикселей первого более детального растра с определенными весами. Если веса одинаковы, то мы получаем равномерное усреднение, как показано на рис. 10.9. Лучших результатов можно достигнуть, если использовать разные веса у пикселей первого растра. На рис. 10.10 показано распределение весов при детализации пикселя экранного растра.

Другой метод устранения ступенчатости состоит в том, чтобы рассматривать пиксель не как точку, а как некоторую конечную область. В алгоритмах построения растровой развертки пиксель считается принадлежащим области закрашивания, если его центр находился внутри идеального образа области. Если рисунок черно-белый, то устранить эффект ступенчатости растра практически невозможно. Но при наличии оттенков полутонов можно задать интенсивность цвета пикселя в зависимости от площади его пересечения с областью.

Рассмотрим применение этого метода на примере раскраски многоугольника. Ребро многоугольника строится с использованием алгоритма Брезенхема, описанного в лекции 9. Здесь в этот алгоритм будут внесены изменения, включающие параметр максимального числа уровней интенсивностей. Определяя принадлежность пикселя многоугольнику, мы будем использовать в качестве ошибки e долю площади, принадлежащей идеальной фигуре (рис. 10.11).

Рис. 10.11. Отсекаемая отрезком площадь пикселя

Рассмотрим опять случай, когда отрезок направлен в положительный квадрант координатной плоскости под углом, меньшим . Идеальный отрезок при заданном значении целочисленной координаты может пересекать один или два пикселя. В предыдущей версии алгоритма выбирался пиксель, центр которого располагался ближе к отрезку. Теперь интенсивность для обоих пикселей будет задаваться в зависимости от степени близости каждого из них. Инициализация пикселя будет использовать интенсивность в качестве параметра. Предполагается, что отрезок начинается с угла первого пикселя, исходя из чего и задается начальная интенсивность. Блок-схема алгоритма приведена на рис. 10.12.

Устранение эффекта ступенчатости с математической точки зрения является задачей сглаживания. Приведенный здесь алгоритм, использующий площади пересечения растра и идеального образа, можно описать с помощью операции свертки функции. Сначала дадим необходимые определения. Сверткой функции называется интеграл вида

(10.9)

Функция называется ядром свертки. В качестве ядра свертки обычно используется либо функция с конечным носителем (т.е. отличная от нуля лишь на некотором конечном интервале), либо быстро убывающая на бесконечности функция (это может являться необходимым условием существования интеграла).

Рассмотрим в качестве свертываемой функции и ядра следующие функции:

Рис. 10.12. Блок-схема модифицированного алгоритма Брезенхема

Тогда, в силу того, что подынтегральное выражение обращается в ноль при и при , получаем

Учитывая вид функции , получаем, что свертка будет отлична от нуля только на интервале . Значения свертки в некоторых точках приведены в таблице 10.1.

Таблица 10.1. Значения свертки в узлах
  1/2   3/2  
  1/8 1/2 3/8  

Очевидно, что наша свертка дает площадь пересечения треугольника, образованного свертываемой функцией с квадратом, основание которого есть отрезок на оси .

Рис. 10.13. Фигуры, соответствующие значениям свертки из таблицы 10.1

На рис. 10.13 приведен вид пересечения для всех пяти случаев из таблицы 10.1. Если сравнить эти результаты с рис. 10.11, то видно, что значения свертки при дают площадь той части пикселя, что находится внутри многоугольника (если считать ), а при - сумму площадей двух пересекаемых пикселей.

В заключение проиллюстрируем результат применения алгоритма устранения ступенчатости на примере изображения, полученного с помощью программы Corel Draw. Эта программа представляет собой развитый графический редактор, позволяющий строить объекты векторной графики. На рис. 10.14 показано изображение простых графических примитивов, предварительно переведенное в растровую форму, на котором при большом увеличении заметно сглаживание с применением оттенков серого цвета.

Рис. 10.14. Сглаженные изображения

Вопросы и упражнения

  1. Что такое эффект полос Маха?
  2. Чем отличается диффузное отражение от зеркального?
  3. От чего зависит интенсивность освещения точки поверхности при диффузном отражении?
  4. От чего зависит интенсивность освещения точки поверхности при зеркальном отражении?
  5. Какие параметры учитывает модель зеркального отражения, предложенная Фонгом?
  6. Меняется ли интенсивность освещения при плоском закрашивании грани?
  7. Какой параметр интерполируется при закрашивании методом Гуро?
  8. Какой параметр интерполируется при закрашивании методом Фонга?
  9. В чем состоит идея алгоритмов антиэлайзинга, основанных на уровне детализации растра?
  10. Какой параметр используется в алгоритме антиэлайзинга, учитывающем размеры пикселя?







Дата добавления: 2015-10-01; просмотров: 407. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия