Выбор сплавов для определенного назначения на основе анализа диаграмм состояния
Чистые металлы используют в электрорадиотехнике (проводниковые, электровакуумные). Основными
конструкционными материалами являются металлические сплавы. Сплавом называют вещество, полученное сплавлением двух или более элементов (компонентов). Сплав, приготовленный преимущественно из металлических элементов и обладающий металлическими свойствами, называется металлическим сплавом. Псевдосплавы – сплавы, созданные путем спекания, возгонки, электролиза.
Металлические сплавы можно получать методом порошковой металлургии, диффузией и другими методами. Преимущественное использование в технике металлических сплавов объясняется тем, что они обладают более ценными, чем чистые металлы, комплексами механических, физических и технологических свойств. К основным понятиям в теории сплавов относятся: система, компонент, фаза, вариантность.
Система – группа тел, выделяемых для наблюдений и изучения. В металловедении системами являются металлы и металлические сплавы. Чистый металл является простой системой. Сплавы состоят из двух или большего числа компонентов и являются сложными системами.
Компонентами называют вещества, образующие систему, взятые в меньшем числе. В металлических сплавах компонентами могут быть элементы (металлы и неметаллы) и химические соединения.
Фазой называется однородная часть системы, отделенная от другой части системы (фазы) поверхностью раздела, при переходе через которую химический состав или структура изменяются скачком. Например, при кристаллизации чистого металла в системе имеются две фазы: жидкая (расплавленный металл) и твердая (зерна затвердевшего металла). В твердых сплавах фазами могут быть зерна чистого металла, зерна твердого раствора и зерна химического соединения.
Вариантность – число внутренних и внешних факторов, изменение которых можно производить при постоянном количестве фаз в системе.
Все металлы в жидком состоянии растворяются один в другом в любых соотношениях. В результате растворения образуется однородный жидкий раствор с равномерным распределением атомов одного металла среди атомов другого металла. Благодаря указанному взаимодействию на практике с целью равномерного распределения веществ в сплаве, как правило, прибегают к их расплавлению. Только лишь очень немногие металлы, главным образом сильно различающиеся размерами атомов, не растворяются в жидком состоянии. Также немногие металлы растворяются в жидком состоянии ограниченно. При образовании сплавов в процессе их затвердевания возможно различное взаимодействие компонентов. Если в процессе кристаллизации сила взаимодействия между однородными атомами окажется больше силы взаимодействия между разнородными атомами, то после кристаллизации образуется механическая смесь, состоящая из зерен чистых металлов. В этом случае в твердом сплаве будут присутствовать зерна одного чистого металла и рядом с ними зерна другого чистого металла. Такая форма взаимодействия возникает при большом различии в свойствах входящих в сплав металлов.
Другой формой взаимодействия между веществами, входящими в состав сплава, является образование твердых растворов.
Твердыми растворами называют такие твердые фазы, в которых соотношения между компонентами могут изменяться. В твердом растворе так же, как и в чистых металлах, атомы в пространстве расположены закономерно, образуя кристаллическую решетку. Этим они и отличаются от жидких растворов. В твердом растворе одно из входящих в состав сплава веществ сохраняет присущую ему кристаллическую решетку, а второе вещество, утратив свое кристаллическое строение, в виде отдельных атомов распределяется в кристаллической решетке первого. Первое вещество является растворителем, а второе – растворимым. В зависимости от характера распределения атомов растворимого элемента различают твердые растворы внедрения, замещения и вычитания.
Твердые растворы также делятся в зависимости от степени растворимости компонентов на растворы с ограниченной растворимостью компонентов и с неограниченной растворимостью.
Построение диаграмм состояния осуществляют различными экспериментальными методами. Наиболее часто пользуются методом термического анализа. Экспериментальная сущность этого метода заключается в следующем. Отбирают несколько сплавов данной системы с различным соотношением масс входящих в них компонентов.
Существуют сплавы – механические смеси, которые образуются в случае невозможности растворения компонентов, находящихся в твердом состоянии. Данные компоненты не могут создать соединения посредством химической реакции. Механические смеси включают элементы, обладающие разными свойствами и строением. В состав сплава включены кристаллы компонентов, которые образуют кристаллические решетки.
Химические соединения – сплавы, которые образуются из разных элементов, содержащих разнородные атомы, между которыми сила взаимодействия значительно выше, чем между однородными атомами. Строение и свойства железа; метастабильная и стабильная фазовые диаграммы железо-углерод. Формирование структуры углеродистых сталей. Определение содержания углерода в стали по структуре
Сплавы железа с углеродом являются самыми распространенными металлическими материалами. Диаграмма состояния железо-углерод дает представление о строении железоуглеродистых сплавов – сталей и чугунов.
Чистое железо – это серебристо-светлый металл, практически не подверженный окислению. Атомный номер 26, атомный вес 55,85. Технически чистое железо содержит 0,10-0,15 % всех примесей. Свойства железа зависят от степени его чистоты. Температура плавления – 1539 °C, плотность – 7,85 г/см3. Железо обладает невысокой твердостью и прочностью и хорошей пластичностью. Чистое железо меньшей прочности, чем чугун или сталь.
Железо со многими элементами образует растворы: с металлами – растворы замещения, с углеродом, азотом и водородом – растворы внедрения. Растворимость углерода в железе зависит от того, в какой кристаллической форме существует железо.
При растворении углерода в железе образуются твердые растворы. Феррит – раствор, получаемый при растворении углерода в низкотемпературной модификации железа. Характеризуется низкой твердостью и повышенной пластичностью. Углерод, растворяясь в высокотемпературной модификации железа, образует пластичный аустенит.
Углерод в природе встречается в виде двух модификаций: в форме алмаза, который имеет сложную кубическую решетку, и в форме графита, имеющего простую гексагональную решетку.
Цементит – карбид железа, содержащий 6,67 % углерода. Хрупкий и твердый. В том случае, если в металле присутствует большое количество кремния, образование цементита не происходит. В данном случае углерод преобразовывается в графит (серый чугун).
Содержание углерода в диаграмме Fе – С (цементит) ограничивается 6,67 %, так как при этой концентрация образуется химическое соединение – карбид железа (FезС) или цементит, который и является вторым компонентом данной диаграммы.
Система Ре – Fе3С метастабильная. Образование цементита вместо графита дает меньший выигрыш свободной энергии, но кинетическое образование карбида железа более вероятно.
Точка А (1539 °C) отвечает температуре плавления железа, точка D (1500 °C) – температуре плавления цементита, точки N (1392 °C) и G (910 °C) соответствуют полиморфному превращению.
Железоуглеродистые сплавы – это стали и чугуны, которые являются основными материалами, используемыми в машиностроении и современной технике.
Сталь – основной металлический материал, широко применяемый для изготовления деталей машин, летательных аппаратов, приборов, различных инструментов и строительных конструкций. Широкое использование сталей обусловлено комплексом механических, физико-химических и технологических свойств.
Стали сочетают высокую жесткость со статической и циклической прочностью. Эти параметры меняют за счет изменения концентрации углерода, легирующих элементов и технологий термической и химико-термической обработки. Изменяя химический состав, получают стали с различными свойствами и используют их во многих отраслях техники и народного хозяйства.
Углеродистые стали классифицируют по содержанию углерода, назначению, качеству, степени раскисления и структуре в равновесном состоянии.
По содержанию углерода стали подразделяются на низкоуглеродистые (< 0,3 % С), среднеуглеродистые (0,3–0,7 % С) и высокоуглеродистые (> 0,7 % С).
По назначению стали классифицируют на конструкционные и инструментальные. Конструкционные стали представляют наиболее обширную группу, которая предназначена для изготовления строительных сооружений, деталей машин и приборов. К этим сталям относят цементуемые, улучшаемые, высокопрочные и рессорно-пружинные. Инструментальные стали подразделяют на стали для режущего, измерительного инструмента, штампов холодного и горячего (до 200 °C) деформирования.
Стали классифицируют по качеству на обыкновенного качества, качественные, высококачественные. Качество стали – это совокупность свойств, определяемых металлургическим процессом ее производства. Однородность химического состава, строения и свойств стали, а также ее технологичность во многом зависят от содержания газов (кислорода, водорода, азота) и вредных примесей – серы и фосфора. Газы являются скрытыми, количественно трудно определяемыми примесями, поэтому нормы содержания вредных примесей служат основными показателями для разделения сталей по качеству. Стали обыкновенного качества бывают только углеродистыми (до 0,5 % С), качественные и высококачественные – углеродистыми и легированными. По степени раскисления и характеру затвердевания стали классифицируют на спокойные, полуспокойные и кипящие.
Легированные стали производят спокойными, углеродистые – спокойными, полуспокойными и кипящими.
По структуре в равновесном состоянии стали делятся на:
1) доэвтектоидные, имеющие в структуре феррит и перлит;
2) эвтектоидные, структура которых состоит из перлита;
3) заэвтектоидные, имеющие в структуре перлит и цементит вторичный.
|