Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Гамма-функция





Гамма-функция, Г-функция, Г-функция Эйлера, эйлеров интеграл 2-го рода, — одна из важнейших трансцендентных функций математического анализа, распространяющая понятие факториала на случай комплексных значений z. Г.-ф. впервые введена Леонардом Эйлером (1729); она определяется формулой

Если действительная часть числа z положительна, то можно также пользоваться формулой

(Эйлеров интеграл 2-го рода).

Если n натуральное число, то Γ(n) = (n − 1)! Интеграл

наз. неполной гамма-функцией. Основные соотношения для Г.-ф.:

Γ(z + 1) = zΓ(z) (функциональное уравнение);

(формула дополнения), отсюда

где при (формула Стирлинга).

В действительной области Γ(x) > 0 для x > 0 и принимает знак (− 1)k + 1 на участках

Для всех действительных x справедливо неравенство

т. е. все ветви как | Γ(x) |, так и ln | Γ(x) | — выпуклые функции. Свойство логарифмической выпуклости определяет Г.-ф. среди всех решений функционального уравнения Γ(1 + x) = xΓ(x) с точностью до постоянного множителя. Для положительных x Г.-ф. имеет единственный минимум при , равный

Локальные минимумы функции | Γ(x) | при образуют последовательность, стремящуюся к нулю. Г.-ф. представляет собой мероморфную функцию с простыми полюсами в точках Функция 1 / Γ(z) является целой функцией 1-го порядка максимального типа:

где C — постоянная Эйлера. Эта формула послужила отправным пунктом для создания теории разложения целых функций в бесконечные произведения. При этом асимптотически где

Через Г.-ф. выражается большое число определённых интегралов, бесконечных произведений и сумм рядов. Она играет важную роль в теории специальных функций — цилиндрических, гипергеометрических и др. Г.-ф. и её свойства используются также в аналитической теории чисел.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Для вычисления гамма-функции используется аппроксимация её логарифма. Для аппроксимации гамма-функции на интервале x>0 используется следующая формула (для комплексных z):

Г(z+1)=(z+g+0.5)z+0.5exp((z+g+0.5)) [a0+a1/(z+1)+a2/(z+2)+...+an/(z+n)+eps]

Эта формула похожа на аппроксимацию Стирлинга, но в ней имеется корректирующая серия. Для значений g=5 и n=6, проверено, что величина погрешности не превышает 2*10-10. Более того, погрешность не превышает этой величины на всей правой половине комплексной плоскости: z > 0.

Для получения (действительной) гамма-функции на интервале x>0 используется рекуррентная формула Г(z+1)=zГ(z) и вышеприведенная аппроксимация Г(z+1). Кроме того, можно заметить, что удобнее аппроксимировать логарифм гамма-функции, чем ее саму. Во-первых, при этом потребуется вызов только одной математической функции - логарифма, а не двух - экспоненты и степени (последняя все равно использует вызов логарифма), во-вторых, гамма-функция - быстро растущая для больших x, и аппроксимация ее логарифмом снимает вопросы переполнения.

Для аппроксимации Ln(Г(х) - логарифма гамма-функции - получается формула:

log(Г(x))=(x+0.5)log(x+5.5)-(x+5.5)+ log(C0(C1+C2/(x+1)+C3/(x+2)+...+C7/(x+8))/x)

Значения коэффициентов Ck - табличные данные.

Сама гамма-функция получается из ее логарифма взятием экспоненты.







Дата добавления: 2015-10-01; просмотров: 1924. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия