Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Симпсона





Многие инженерные задачи, задачи физики, геометрии и многих других областей человеческой деятельности приводят к необходимости вычислять определённый интеграл.



Суть приёма заключается в приближении подынтегральной функции на отрезке интерполяционным многочленом второй степени , то есть приближение графика функции на отрезке параболой. Метод Симпсона имеет порядок погрешности и алгебраический порядок точности. Метод Симпсона относится к приёмам численного интегрирования. Получила название в честь британского математика Томаса Симпсона (1710—1761)


Разобьем отрезок интегрирования [a,b] на четное число n равных частей с шагом h. На каждом отрезке подынтегральную функцию f(x) заменим интерполяционным многочленом второй степени:

Коэффициенты этих квадратных трехчленов могут быть найдены из условий равенства многочлена в точках xi соответствующим табличным данным yi. В качестве j i(x) можно принять интерполяционный многочлен Лагранжа второй степени, проходящий через точки Mi-1(xi-1,yi-1), Mi(xi,yi), Mi+1(xi+1, yi+1):

Элементарная площадь si может быть вычислена с помощью определенного интеграла.

Учитывая равенства xi+1 - xi = xi - xi-1 = h, получаем

Проведя такие вычисления для каждого элементарного отрезка [xi-1, xi+1], просуммируем полученные выражения:

Данное выражение для S принимается в качестве значения определенного интеграла:

Полученное соотношение называется формулой Симпсона.

Сравнив методы прямоугольников и трапеций с методом Симпсона, отметим, что последний обладает более высокой точностью. Главный член погрешности метода Симпсона имеет вид:

 







Дата добавления: 2015-10-01; просмотров: 1368. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия