Чужой конверт всегда более зеленый
В азартных играх неизменно действует принцип: выигрыш одного игрока обязательно означает проигрыш другого. Следовательно, прежде чем соглашаться на участие в такой игре, особенно важно оценить ее с точки зрения другого игрока. Если кто-то готов предложить вам пари, значит он рассчитывает на то, что он выиграет, а вы проиграете. Кто-то из вас ошибается, но кто? В этом разделе мы рассмотрим пример пари, которое, на первый взгляд, принесет прибыль обеим сторонам. Это просто невозможно, но в чем же подвох? Есть два конверта, в каждом из которых находится определенная сумма денег: 5, 10, 20, 40, 80 или 160 долларов. В одном из конвертов ровно в два раза больше денег, чем в другом. Конверты перемешивают и отдают один из них Али, другой Бабе. После того как оба конверта вскрывают (но их содержимое не раскрывается), Али и Баба получают возможность обменяться конвертами. Если обе стороны готовы сделать такой обмен, им это разрешается сделать. Предположим, Баба открывает свой конверт и видит там 20 долларов. Он рассуждает так: «Али с равной степенью вероятности может обнаружить в своем конверте либо 10, либо 40 долларов. Следовательно, мой ожидаемый выигрыш в случае обмена конвертов составит (10 + 40) / 2 = 25 > 20. Поскольку на кону такая небольшая сумма, риск незначителен, поэтому обмен конвертами отвечает моим интересам». Рассуждая аналогичным образом, Али примет решение обменяться конвертами в любом случае: и если увидит в конверте 10 долларов (и придет к выводу, что может получить либо 5, либо 20 долларов, что в среднем составляет 12,5 доллара), и если в конверте окажется 40 долларов (в таком случае возможный выигрыш составит либо 20, либо 80 долларов, в среднем – 50 долларов). Здесь что-то не так. Обе стороны не могут остаться в выигрыше, обменявшись конвертами, поскольку общая сумма денег при этом остается неизменной. Кто из двух игроков ошибается в своих рассуждениях? Стоит ли Али и (или) Бабе предлагать обмен конвертами?
Анализ примера
Такой обмен вообще был бы невозможен, если бы Али и Баба рассуждали логично и исходили из предположения, что другой делает то же самое. Ошибка их рассуждений заключалась в предположении о том, что готовность другого игрока обменяться конвертами не раскрывает никакой информации. Эту задачу можно решить, более внимательно проанализировав, что думает каждый игрок о ходе мыслей другого игрока. Сначала рассмотрим точку зрения Али на то, как размышляет Баба. Затем проанализируем ситуацию с точки зрения Бабы и попытаемся определить, что о нем думает Али. Снова вернемся к мыслям Али о том, что думает Баба о том, что думает о нем Али. Все это звучит сложнее, чем есть на самом деле, поэтому приведем конкретный пример. Предположим, Али открывает конверт и видит там 160 долларов. Очевидно, что у Али более крупная сумма, поэтому в обмене нет смысла. Поскольку Али не станет меняться конвертами, имея 160 долларов, Баба должен отказаться от обмена, если у него 80 долларов, поскольку для Али обмен был бы выгоден только в случае, если бы в конверте было 40 долларов, но тогда Баба должен сохранить свои 80 долларов. Однако если Баба не станет меняться конвертами, имея 80 долларов, то Али не стоит этого делать, обнаружив в своем конверте 40 долларов, так как обмен был бы возможен, только если бы в конверте Бабы находилось 20 долларов. Мы пришли к исходному предположению. Если Али не хочет обмениваться конвертами, имея 40 долларов, тогда обмена не будет и в случае, если Баба найдет в своем конверте 20 долларов: он не станет менять 20 долларов на 10. Единственный, кто будет готов пойти на обмен, – это тот, кто обнаружит в своем конверте 5 долларов, но тогда другой игрок не захочет с ним меняться.
Как выбрать самое лучшее место
Один из наших коллег решил пойти на концерт Джексона Брауна, который проходил в Саратога-Спрингс. Он приехал одним из первых и осмотрел территорию, чтобы найти место получше. Накануне шел дождь, поэтому зона перед сценой была вся в грязи. Наш коллега выбрал место, которое было поближе к сцене, но за грязной зоной. В чем он ошибся?
|