Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Розгляньмо випадок стохастичної моделі.





Припустимо, що попит на t -му проміжку часу лінійно залежить від поточної ціни (це припущення не є обов’язковим. Навпаки, воно досить жорстке. У реальних процесах припускається, що така залежність буде нелінійною. Вид залежності визначається на підставі застосування економетричних методів і моделей).

Окрім цього, вважатимемо, що попит на ринку має випадковий розкид. Для формалізованого опису необхідно в наших припущеннях обчислити на підставі доступної інформації відповідно оцінки коефіцієнтів лінійного рівняння та похибку як випадкову величину, що має певний закон розподілу.

У результаті відповідних обчислень можна отримати, зокрема, такий вираз:

Dt = ABXt + ut, (1.1)

де Dt —попит на t -му проміжку часу; A, B —коефіцієнти лінійної регресії (В > 0); Xt — ціна одиниці продукції на t -му проміжку часу; ut — випадкова величина, що має заданий закон розподілу.

Логічно припускати, що попит симетрично коливається відносно деякого середнього значення, котре визначається постійними коефіцієнтами лінійного рівняння (їхніми оцінками). Тому, зокре­ма, можна обрати нормальний закон розподілу з нульовим математичним сподіванням і заданим середньоквадратичним відхиленням s u.

Припустимо, що пропозиція впродовж поточного проміжку часу також лінійно (в середньому) залежить від ціни, але не поточної, а такої, що являє собою комбінацію цін на двох поперед­ніх проміжках часу. У найпростішому випадку це може бути середнє значення цін протягом двох попередніх проміжків часу. Отже, для обчислень пропозиції можна (якщо для цього є підстави) використовувати таку залежність:

St = C + KX (r) + vt, (1.2)

де St — пропозиція впродовж t -го проміжку часу; C, K — коефіцієнти лінійної регресії (K > 0); X (r)—середнє (середньозважене) значення ціни на двох попередніх проміжках часу; vt — випадкова величина, що має заданий закон розподілу. Можна, зокрема, для спрощення обрати нормальний закон розподілу випадкової величини vt з нульовим математичним сподіванням і заданим середньоквадратичним відхиленням s v.

Ціна X (r)може визначатися згідно з формулою:

X (r) = Xt– 1– r(Xt –1Xt –2), (1.3)

де Xt –1— ціна на (t – 1)-му проміжку часу; Xt –2 — ціна на (t – 2)-му проміжку часу; r — ваговий коефіцієнт, значення котрого задається в моделі в діапазоні (0 £ r £ 1). Якщо r = 0, то середньозважена ціна X (r) = Xt –1. Це означає, що навчання в модель не закладене. Для другого граничного випадку (r = 1) середньо­зважена ціна X (r) = Xt –2. Це також означає, що навчання у моделі відсутнє, але для визначення пропозиції використовується віддалене в часі значення ціни. За умови r = 0,5 середньозважена ціна X (r)дорівнює середньоарифметичному значенню цін Xt –1 та Xt –2.

До моделі треба ще долучити рівняння локальної рівноваги ринку:

St = Dt + wt, (1.4)

де St — пропозиція на t -му проміжку часу; Dt —попит на t -му проміжку часу; wt — випадкова величина, котра має заданий закон розподілу.

Можна прийняти гіпотезу, що wt має нормальний закон розподілу з нульовим значенням величини математичного сподівання та із середньоквадратичним відхиленням — s w.

Система рівнянь (1.1)—(1.4) після відповідних простих перетворень зводиться до такого виразу:

Xt = F (Xt –1, Xt –2), (1.5)

де F (Xt –1, Xt –2)—функція, що є оцінкою кореляційно-регресій­ного зв’язку між змінними Xt, Xt –1, Xt –2.

Спочатку необхідно якимось наближеним способом визначити ціну для перших двох проміжків часу. Після цього можна проводити обчислення згідно з виразом (1.5) певну кількість разів (ітерацій). Результати обчислень можуть бути подані також у графіч­ному вигляді.

Задача аналізу полягає у дослідженні впливу параметрів системи на характер залежності ціни у часі (як функції часу), а також у знаходженні рівноважної ціни.

Завдання для лабораторної роботи

1. Розробити алгоритм «павутиноподібної моделі» та програму його реалізації на комп’ютері. Провести налагодження програми для усунення формальних помилок.

Умова збіжності:

. (1.6)

Ітеративний процес завершується за умови, коли

,

де e — задане досить мале число.

2. Виявити збіжність процесу згідно із запропонованою схемою. Дослідити збіжність, коли:

а) K = B (наприклад K = 5);

б) K < B (наприклад K = 3);

в) K > B (наприклад K = 6).

3. Здійснити пошук і аналіз рівноважної ціни за умови, коли кореляційно-регресійні залежності між попитом на продукцію та її ціною, а також між пропозицією та ціною подані нелінійними залежностями. Побудувати відповідний алгоритм, комп’ютерну програму та провести відповідні обчислення на підставі певних гіпотетичних даних щодо значень параметрів моделі.







Дата добавления: 2015-10-01; просмотров: 308. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия