Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Виды загрязняющих веществ, их источники и влияние на состояние почв




Существуют различные классификации загрязняющих веществ. Они опираются на разные критерии: на антропогенные источники их поступления (промышленность, транспорт и пр.), на режимы поступления в окружающую среду (спонтанный, регулируемый и пр.), на их фазовое состояние (твердофазные, аэрозоли и пр.) и другие признаки. Наиболее эффективной является классификация загрязняющих веществ по их химическим свойствам, так как именно химические свойства определяют перераспределение и трансформацию поллютантов в окружающей среде. Выделяются следующие группы загрязняющих веществ: а) оксиды углерода, серы, азота; б) металлы и металлоиды; в) органические поллютанты. Отдельно стоят радиоактивные вещества, губительное действие которых связано с их проникающей радиацией, а не с химическим воздействием на живые организмы. Поступление в окружающую среду любых загрязняющих веществ обеспечивается всеми видами хозяйственной деятельности человека. Поступают загрязняющие вещества с отходами промышленности (добыча полезных ископаемых, металлургическая, химическая промышленность и др.), предприятий энергетики (тепловые электростанции), транспорта (выхлопные газы различных видов транспорта, стирающиеся покрытия автодорог). Нефть и нефтепродукты загрязняют окружающую среду в районах нефтедобывающих и нефтеперерабатывающих предприятий. В сфере сельскохозяйственной деятельности с земледелием связано загрязнение среды различными химическими веществами, поступающими с остаточными количествами ядохимикатов, входящих в состав сопутствующих средств химизации: традиционных и нетрадиционных удобрений, мелиорантов, оросительных вод. В сфере животноводства окружающая среда загрязняется отходами стойлового содержания животных, органическими веществами стоков

и твердых отходов. Коммунально-бытовая деятельность ведет к загрязнению среды дымовыми газами, бытовыми сточными водами, твердыми бытовыми отходами, экзогенными химическими веществами, используемыми в быту. Радиоактивное загрязнение связавно с выбросами отходов атомной промышленности.

Загрязнение окружающей среды оксидами углерода, серы, азота и вызванные ими нарушения экологического состояния почв Техногенное поступление в окружающую среду оксидов углерода, серы, азота преимущественно связано с сжиганием топлива (угля, нефти, газа). Техногенные источники вносят существенный вклад в формирование современного состава атмосферы. Таблица 6.6 показывает соотношение природных и техногенных составляющих в газовой фазе атмосферы.

За счет антропогенных источников содержание С02 в атмосфере повышается. Локальных или региональных экологических последствий это событие не имеет. Но все более значимым становится влияние его на глобальном уровне. За счет увеличения объема сжигаемого топлива только за последнюю четверть века среднее содержание С02 в атмосфере промышленных регионов повысилось по сравнению с фоновым почти на 10 %. Предполагается, что ежегодно увеличивается поступление С02 на 0,3 %. Увеличение концентрации С02 в атмосфере — одна из причин «парникового эффекта», который ведет к повышению температуры на планете. На локальном уровне прявляется токсичное действие монооксида углерода СО (угарного газа). Основные техногенные источники поступления СО в атмосферу: транспорт и предприятия энергетики. СО образуется при сжигании любых видов топлива (нефти, угля, древесины) как промежуточный продукт окисления органических веществ. Но основной техногенный источник поступления в атмосферу монооксида углерода — выхлопные газы автомобилей. Его поступления с выхлопными газами автомобилей более чем на порядок превышают поступление с отходами заводов, электростанций. В атмосфере может сохраняться до трех лет. Что касается оксидов азота (моно- и диоксидов), оценки вклада различных отраслей производства в загрязнение ими атмосферы различаются. Бесспорно одно: высокий уровень их поступления с отходами сжигания топлива, 50 — 80 % от общего количества, выбрасываемого в атмосферу. Вторым по влиянию на загрязнение атмосферы оксидами азота является автотранспорт. Токсичность диоксида азота выше, чем монооксида азота. Так же, как углерод и азот, сера является обязательным компонентом природных органических веществ. По этой причине велико влияние на загрязнение атмосферы оксидами серы сжигания нефти, угля, газа, древесины. По обобщенным данным, отходы топливной энергетики обеспечивают не менее 55 % от общего объема выбросов оксидов серы, среди которых преобладает диоксид серы. Вносят вклад также металлургическая промышленность (25 % от общего поступления), очистка и переработка нефти и угля (10%), химическая промышленность, транспорт и другие виды хозяйственной деятельности человека (10 %). В таблице 6.7 показан один из примеров вклада различных источников в загрязнение атмосферы оксидами серы и азота.

Общепланетарное техногенное поступление диоксида серы в атмосферу, по разным источникам, составляет в среднем 140 — 290 млн т в год. Предполагается, что в XXI веке выброс диоксида серы увеличится в 3 — 5 раз. Сернистый ангидрид S02 преобладает среди других соединений серы техногенного происхождения, по разным источникам, это превышение колеблется от 1,5 — 2 раз до 7 —8 раз. Действие оксидов азота и оксидов серы на экосистему проявляется на локальном, региональном и глобальном уровнях. Экологическая опасность локального и регионального загрязнения атмосферы оксидами серы и азота состоит в том, что они способны растворяться в атмосферных осадках с образованием серной и азотной кислот и проливаться на земную поверхность в форме кислотных дождей. Кислотные осадки — атмосферные осадки, имеющие более кислую (по сравнению с региональными фоновыми уровнями) реакцию за счет повышенного содержания в них серной и азотной кислот техногенного происхождения. Дождевая вода обычно имеет слабокислую реакцию (рН = 5,6), что обусловлено растворением в ней углекислого газа атмосферы. Кислотными называют осадки, рН которых ниже 5,5, и во многих промышленно развитых странах мира кислотность дождевой воды повышается на порядок и более, особенно кислотность росы и тумана. Основная часть выбросов S02 (94 %) приходится на Северное полушарие, где сконцентрирована преимущественно мировая промышленность. В Европе главными его источниками являются промышленные комплексы Германии и Великобритании. Дальность распространения газов в атмосфере составляет в среднем 300 — 400 км, может достигать 1—2 тыс. км. На территории многих стран Европы до половины и более от общего количества сернистых соединений поступает из соседних стран. Закисление почв — локальное или региональное повышение (по сравнению с региональными фоновыми уровнями) кислотности почв за счет действия антропогенных факторов. Такими факторами наряду с кислотными осадками может быть применение физиологически кислых удобрений (например, сульфата аммония). В нашей стране природными факторами обеспечено широкое распространение кислых почв. В различных районах нашей страны на их долю приходится от У3 до половины пахотных земель, среди которых преобладают сильно- и среднекислые почвы. Это почвы Республики Коми, Сахалина, Амурской, Пермской, Пензенской и других областей. Наблюдения в районах интенсивных выпадений кислотных осадков показывают, что изменения рН почвы достигает 0,5 — 2,0 единиц. Причем в менее кислых почвах величины рН снижаются в большей степени, чем в почвах, имеющих более низкие значения рН (Соколова, Дронова, 1993). При закислении почв повышается растворимость почвенных алюмосиликатов, усиливается преобразование несиликатных окристаллизованных форм Fe и А1 в аморфные. Активизируется выщелачивание из почвенно-поглощающего комплекса биогенных элементов Са, Мд, К, Na,

повышается содержание в нем ионов алюминия, железа. Закисление почв даже при отсутствии загрязнения их металлами может вызвать повышение растворимости этих соединений в почве, к увеличению их содержания в почвенном растворе до избыточного. Отрицательное действие металлов на живые организмы может быть связано не только с повышением их концентрации в растворе, но и с изменением соотношения обеспечивающих эту концентрацию ионов металлов. Например, среди соединений алюминия жидкой фазы почв начинают преобладать мономеры свободных ионов, а они более токсичны. Многие растения чувствительны к алюминию, повышение растворимости в его соединений в почвах может способствовать снижению уровня почвенного плодородия. Подкисление сопровождается изменением подвижности и других элементов питания растений за счет повышения растворимости их соединений, что может нарушать их соотношение в растворе и сопровождаться неблагоприятными экологическими последствиями. Эффект закисления почв зависит от буферной способности почвы, от их способности нейтрализовать кислоты. Карбонатные почвы в качестве буфера, способного нейтрализовать избыточное поступление кислот в почвенный раствор, содержат карбонат кальция, именно поэтому на юге нашей страны проблема подкисления почв неактуальна. Различия в исходной кислотности почв сопровождаются сменой ведущих факторов, обусловливающих нейтрализацию протонов техногенного происхождения. В так называемом «силикатном» диапазоне буферности почв к кислоте (рН 5,0 — 6,2) имеет значение высвобождение катионов I и II групп, а при рН 4,2 — 5,0 — участие реакций ионного обмена. При более кислой реакции и высокой ненасыщенности ППК основаниями буферность почв обеспечивают реакции растворения алюмосодержащих минералов и несиликатных соединений железа.

Кислотно-основные условия влияют на поглотительную способность твердых фаз почвы амфолитоидной природы. При подкислении почв снижается их способность поглощать катионы, что способствует их выносу из почвенного профиля.







Дата добавления: 2015-10-02; просмотров: 436. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.002 сек.) русская версия | украинская версия