Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение. Точки максимума и минимума функции называются точками экстремума.


3. Сыдыкова Д.К. Математика I. Методическое руководство к выполнению заданий для СРС. -Алматы: КазГАСА, 2008.

4. Сыдыкова Д.К. «Курс Математики- I», Модуль I, II для дистанционного обучения. Электронный учебник.-Алматы: КазГАСА, 2012.

5. www.studentlibrary.ru

6. http://sferaznaniy.ru/vysshaya-matematika.

Глоссарий

Қазақша Русский English
1. Туынды Производная Derivative
2. Дифференциал Дифференциал Differential operator
3. Туындыны табудың тіке әдісі Непосредственный метод отыскания производной Delta method
4. Солжақты туынды Производная слева Derivative on the left
5. Оңжақты туынды Производная справа Derivative on the right

 

Литература:

Основная

  1. А.П. Рябушко. Индивидуальные задания по высшей математике, т.1. - Мн.: Выш. Школа, 2011.

2. Данко П.Е., Попов А.Г. Высшая математика в упражнениях и задачах: Учебное пособие для втузов. - М.: Оникс, 2007.

Дополнительная

3. Сыдыкова Д.К. Математика I. Методическое руководство к выполнению заданий для СРС. -Алматы: КазГАСА, 2008.

4. Сыдыкова Д.К. «Курс Математики- I», Модуль I, II для дистанционного обучения. Электронный учебник.-Алматы: КазГАСА, 2012.

5. www.studentlibrary.ru

6. http://sferaznaniy.ru/vysshaya-matematika.

Определение. Точки максимума и минимума функции называются точками экстремума.

Теорема. (необходимое условие существования экстремума) Если функция f(x) дифференцируема в точке х = х1 и точка х1 является точкой экстремума, то производная функции обращается в нуль в этой точке.

Определение. Критическими точками функции называются точки, в которых производная функции не существует или равна нулю.

Теорема. (Достаточные условия существования экстремума)

Пусть функция f(x) непрерывна в интервале (a, b), который содержит критическую точку х1, и дифференцируема во всех точках этого интервала (кроме, может быть, самой точки х1).

Если при переходе через точку х1 слева направо производная функции f¢(x) меняет знак с “+” на “-“, то в точке х = х1 функция f(x) имеет максимум, а если производная меняет знак с “-“ на “+”- то функция имеет минимум.

На основе вышесказанного можно выработать единый порядок действий при нахождении наибольшего и наименьшего значения функции на отрезке:

 

1) Найти критические точки функции.

2) Найти значения функции в критических точках.

3) Найти значения функции на концах отрезка.

4) Выбрать среди полученных значений наибольшее и наименьшее.

Исследование функции на экстремум с помощью

производных высших порядков.

 

Пусть в точке х = х1 f¢(x1) = 0 и f¢¢(x1) существует и непрерывна в некоторой окрестности точки х1.

 

Теорема. Если f¢(x1) = 0, то функция f(x) в точке х = х1 имеет максимум, если f¢¢(x1)<0 и минимум, если f¢¢(x1)>0.

Определение. Кривая обращена выпуклостью вверх на интервале (а, b), если все ее точки лежат ниже любой ее касательной на этом интервале. Кривая, обращенная выпуклостью вверх, называется выпуклой, а кривая, обращенная выпуклостью вниз – называется вогнутой.

Теорема 1. Если во всех точках интервала (a, b) вторая производная функции f(x) отрицательна, то кривая y = f(x) обращена выпуклостью вверх (выпукла).

Определение. Точка, отделяющая выпуклую часть кривой от вогнутой, называется точкой перегиба.

 

Очевидно, что в точке перегиба касательная пересекает кривую.

Теорема 2. Пусть кривая определяется уравнением y = f(x). Если вторая производная f¢¢(a) = 0 или f¢¢(a) не существует и при переходе через точку х = а f¢¢(x) меняет знак, то точка кривой с абсциссой х = а является точкой перегиба.

При исследовании функций часто бывает, что при удалении координаты х точки кривой в бесконечность кривая неограниченно приближается к некоторой прямой.

Определение. Прямая называется асимптотой кривой, если расстояние от переменной точки кривой до этой прямой при удалении точки в бесконечность стремится к нулю.

Следует отметить, что не любая кривая имеет асимптоту. Асимптоты могут быть прямые и наклонные. Исследование функций на наличие асимптот имеет большое значение и позволяет более точно определить характер функции и поведение графика кривой.

Вообще говоря, кривая, неограниченно приближаясь к своей асимптоте, может и пересекать ее, причем не в одной точке, как показано на приведенном ниже графике функции . Ее наклонная асимптота у = х.

 

Рассмотрим подробнее методы нахождения асимптот кривых.

Вертикальные асимптоты.

Из определения асимптоты следует, что если или или , то прямая х = а – асимптота кривой y = f(x).

Наклонные асимптоты.

Предположим, что кривая y = f(x) имеет наклонную асимптоту y = kx + b.

,

Отметим, что горизонтальные асимптоты являются частным случаем наклонных асимптот при k =0.

Схема исследования функций

1) Область существования функции.

Это понятие включает в себя и область значений и область определения функции.

2) Точки разрыва. (Если они имеются).

3) Интервалы возрастания и убывания.

4) Точки максимума и минимума.

5) Максимальное и минимальное значение функции на ее области определения.

6) Области выпуклости и вогнутости.

7) Точки перегиба. (Если они имеются).

8) Асимптоты. (Если они имеются).

9) Построение графика.




<== предыдущая лекция | следующая лекция ==>
Задание на СРСП. 1. Разложение определителя n-го порядка по элементам какой-либо строки или столбца определителя | Дополнительная. 4. Сыдыкова Д.К. «Курс Математики- I», Модуль I, II для дистанционного обучения

Дата добавления: 2015-10-02; просмотров: 488. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия