Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЗАТУХАЮЩИЕ ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ





 

В реальных условиях, кроме возвращающей силы в колебательной системе обязательно будет действовать и сила сопротивления. Будем считать, что скорости движения при колебаниях будут небольшими, тогда сила сопротивления прямо пропорциональна скорости:

, (13)

где r –коэффициент сопротивления. Учитывая только силу сопротивления (13) и силу упругости (1) согласно II закону Ньютона для уравнения движения получим:

, (14)

. (15)

Разделив правую и левую часть (15) на m и обозначив k/m = , а r/m = 2β, получим:

или . (16).

Это однородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Его характеристическое уравнение:

к2 + 2b·к + w = 0 имеет корни . (17)

 

Из (17) видно, что движение будет колебательным, только если b2 < w . При этом условии корни (17) будут комплексными числами и решением уравнения (16) будет периодическая функция. Представим корни (17) в виде:

, где .

Теперь решением уравнения (16) будет функция:

 

s= е-βt1cosωt + C2sinωt).

 

Заменяя С1 и С2 через другие постоянные А0 и φ0 такие, что С1 = А0cosφ0, а С2 = А0sinφ0 окончательно получим:

 

s = А0еβtcos(ωt + φ) (18).

 

Это уравнение свободных затухающих колебаний, график которых представлен на рис.5. Как видно амплитуда свободных затухающих колебаний убывает по экспоненциальному закону:

 

А = А0 е−βt, (19)

 

(рис.5, пунктирная линия). Круговая частота этого колебания w = , а период Т = 2π / . Как видно, ни частота, ни период затухающих колебаний не равны соответствующим параметрам собственных колебаний системы.

Для описания быстроты затухания колебаний используют три взаимосвязанные величины: коэффициент затухания – β, декремент затухания – δ и логарифмический декремент затухания – λ. Коэффициент затухания b = , [b] = 1/с. Декремент затухания –

(20)

и логарифмический декремент затухания

 

l = ℓ n d = ℓnеβТ = βТ. (21)

 







Дата добавления: 2015-10-02; просмотров: 498. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия