Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Стохастические фракталы





Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря.

Типичный представитель данного класса фракталов "Плазма" (см. рис. 4). Для ее построения возьмем прямоугольник и для каждого его угла определим цвет. Далее находим центральную точку прямоугольника и раскрашиваем ее в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число - тем более "рваным" будет рисунок. Если мы теперь скажем, что цвет точки это высота над уровнем моря - получим вместо плазмы - горный массив. Именно на этом принципе моделируются горы в большинстве программ. С помощью алгоритма, похожего на плазму строится карта высот, к ней применяются различные фильтры, накладываем текстуру и, пожалуйста, фотореалистичные горы готовы.

 

 

 

Рис. 4. "Плазма"

 


Индивидуальные задания по теме "Фракталы"

 

№ варианта Изображение Описание
Аналитические фракталы
  Множество Мандельброта x Î(-2,2; 1), y Î(-1,2; 1,2). Условие остановки цикла
 
 
 
  Множество Жулиа , С=0,36+ i ×0,36, x Î(-1; 1), y Î(-1,2; 1,2). Условие завершения цикла .
  Множество Жулиа С=0,32+ i ×0,043
  Множество Жулиа С =-0,39054- i ×0,58679
  Множество Жулиа С= i
  Множество Жулиа
  Множество Жулиа
  Крест Ньютона . x Î(-1; 1), y Î(-1; 1). Условие остановки цикла

 

L-системы
  Кривая Коха Аксиома: F Правило: F → F-F++F-F Угол:
  Снежинка Коха Аксиома: F++F++F Правило: F → F-F++F-F Угол:
  Аксиома: F+F+F Правило: F → F-F+F Угол:
  Аксиома: F+F+F+F Правило: F → FF+F++F+F Угол: Ледяные фракталы
  Кривая дракона Аксиома: FX Правила: X → X+YF+ Y → -FX-Y Угол:
  Кривая Госпера Аксиома: XF Правила: X → X+YF++YF-FX--FXFX-YF+ Y → -FX+YFYF++YF+FX--FX-Y Угол:
  Кривая Серпинского Аксиома: F+XF+F+XF Правило: X → XF-F+F-XF+F+XF-F+F-X Угол:
  Кривая Гильберта Аксиома: X Правила: X → -YF+XFX+FY- Y → +XF-YFY-FX+ Угол:
  Аксиома: F+F+F+F Правило: F → FF+F+F+F+FF Угол:
  Аксиома: F+F+F+F Правило: F → F+F-F-FF+F+F-F Угол: Обобщения кривой Коха
  Аксиома: F+F+F+F Правило: F → F+F-F-FFF+F+F-F Угол: Обобщения кривой Коха
  Аксиома: F+F+F+F Правило: F → F-FF+FF+F+F-F-FF+F+F-F-FF-FF+F Угол: Обобщения кривой Коха
  Аксиома: F Правило: F → F-F+F+F-F Угол:
  Аксиома: YF Правила: X → YF+XF+Y Y → XF-YF-X Угол:
  Аксиома: F+F+F+F Правило: F → F+F-F+F+F Угол:
  Аксиома: F+F+F+F Правило: F → FF+F+F+F+F+F-F Угол:
  Куст Аксиома: Y Правила: X → X[-FFF][+FFF]FX Y → YFX[+Y][-Y] Угол:
  Куст Аксиома: F Правило: F → FF+[+F-F-F]-[-F+F+F] Угол:
  Куст Аксиома: F Правило: F → F[+FF][-FF]F[-F][+F]F Угол:
  Куст Аксиома: X Правила: F → FF X → F[+X]F[-X]+X Угол:
  Куст Аксиома: F-F-F-F Правило: F → F-F+F+F-F Угол:
  Сорняк Аксиома: F Правило: F → F[+F]F[-F]F Угол:
  Аксиома: F Правила: F → FXF X → [-F+F+F]+F-F-F+ Угол:
  Треугольник Серпинского Аксиома: FXF--FF--FF Правила: F → FF X → --FXF++FXF++FXF-- Угол:
  Ковёр Серпинского Аксиома: F Правило: F → FFF[+FFF+FFF+FFF] Угол:
  Мозаика Аксиома: F-F-F-F Правила: F → F-b+FF-F-FF-Fb-FF+b-FF+F+FF+Fb+FFF b → bbbbbb Угол: Здесь b означает переместиться вперёд на один шаг, не прорисовывая след.
  Кривая Леви Аксиома: F++F++F++F Правило: F → -F++F- Угол:
  Аксиома: F++F++F++F++F Правило: F → F++F++F+++++F-F++F Угол:
  Аксиома: F Правило: F → F+F-F Угол:
  Ковёр Серпинского Аксиома: F Правила: F → F+F-F-F-b+F+F+F-F b → bbb Угол: Здесь b означает переместиться вперёд на один шаг, не прорисовывая след.
  Аксиома: F-F-F-F-F Правило: F → F-F++F+F-F-F Угол:
  Аксиома: X Правила: F → X → -F++F-X-F--F+Y---F--F+Y+F++F-X+++F++F-X-F++F-X+++F--F+Y-- Y → +F++F-X-F--F+Y+F--F+Y---F--F+Y---F++F-X+++F++F-X+++F--F+Y Угол:
  Аксиома: FX Правила: F → X → FX-FY-FX+FY+FX+FY+FX+FY+FX-FY-FX-FY-FX-FY-FX+FY+FX Y → FY Угол:
  Аксиома: XYXYXYX+​XYXYXYX+​XYXYXYX+​XYXYXYX Правила: F → X → FX+FX+FXFY-FY- Y → +FX+FXFY-FY-FY Угол:
  Аксиома: F--F--F--F--F--F Правило: F → -F[--F--F]++F--F+ Угол:
  Аксиома: F+F+F Правило: F → F+FF-F Угол:
  Аксиома: X Правила: F → X → FY+FYFY-FY Y → FX-FXFX+FX Угол:
  Аксиома: X Правила: F → X → FX+FX+FXFYFX+FXFY-FY-FY- Y → +FX+FX+FXFY-FYFXFY-FY-FY Угол:
  Аксиома: X-X-X-X-X Правила: F → X → FX-FX-FX+FY+FY+FX-FX Y → FY+FY-FX-FX-FY+FY+FY Угол:
  Аксиома: F-F-F-F-F Правило: F → F-F-F++F+F-F Угол:
  Аксиома: L--F--L--F Правила: L → +R-F-R+ R → -L+F+L- Угол:
  Аксиома: X Правила: X → F-F-F+F+FX++F-F-F+F+FX--F-F-F+F+FX F → Угол:
  Аксиома: F++++F Правило: F → F+F+F++++F+F+F Угол:
  Аксиома: F+F+F+F++F-F-F-F Правило: F → F+F++F+FF Угол:
  Аксиома: F++F++F+++F--F--F Правило: F → FF++F++F++FFF Угол:
Стохастические фракталы
  Плазма

 







Дата добавления: 2015-10-02; просмотров: 1045. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия