Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод наименьших квадратов





Получение регрессионной модели происходит в два этапа:

1) подбор вида функции;

2) вычисление параметров функции.

Первая задача не имеет строгого решения. Здесь может помочь опыт и интуиция исследователя, а возможен и «слепой» перебор из конечного числа функций и выбор лучшей из них.

Чаще всего выбор производится среди следующих функций:


Квадратичная функция называется в математике полиномом второй степени. Иногда используются полиномы и более высоких степеней, например полином третьей степени имеет вид: у = ах + bх +cx + d.

Во всех этих формулах х — аргумент, у — значение функции, а, Ь, с, d — параметры функции, lп(х) — натуральный логарифм, е — константа, основание натурального логарифма.

Если вы выбрали (сознательно или наугад) одну из предлагаемых функ­ций, то следующим шагом нужно подобрать параметры (а, b, с и пр.) так, чтобы функция располагалась как можно ближе к экспериментальным точкам. Что значит «располагалась как можно ближе»? Ответить на этот вопрос значит предложить метод вычисления параметров. Такой метод был предложен в XVIII веке немецким математиком К. Гауссом. Он называется методом наименьших квадратов (МНК). Суть его заключается в следующем: искомая функция должна быть построена так, чтобы сумма квадратов отклонений г/-координат всех экспериментальных точек от у-координат графика функции была минимальной.

Мы не будем здесь производить подробное математическое описание метода наименьших квадратов. Достаточно того, что вы теперь знаете о су­ществовании такого метода. Он очень широко используется в статистичес­кой обработке данных и встроен во многие математические пакеты про­грамм. Важно понимать следующее: методом наименьших квадратов по данному набору экспериментальных точек можно построить любую (в том числе и из рассмотренных выше) функцию. А вот будет ли она нас удов­летворять, это уже другой вопрос — вопрос критерия соответствия. На рис. 6.4 изображены три функции, построенные методом наименьших квадратов по приведенным экспериментальным данным.

 

 

Данные рисунки получены с помощью табличного процессора Microsoft Excel. График регрессионной модели называется трендом. Английское слово «trend» можно перевести как «общее направление», или «тенденция».

Уже с первого взгляда хочется отбраковать вариант линейного тренда. График линейной функции — это прямая. Полученная по МНК прямая отражает факт роста заболеваемости от концентрации угарного газа, но по этому графику трудно что-либо сказать о характере этого роста. А вот квадратичный и экспоненциальный тренды правдоподобны. Теперь пора обратить внимание на надписи, присутствующие на графиках. Во-пер­вых, это записанные в явном виде искомые функции - регрессионные модели:


 

На графиках присутствует еще одна величина, полученная в результа­те построения трендов. Она обозначена как R2. В статистике эта величина называется коэффициентом детерминированности. Именно она опреде­ляет, насколько удачной является полученная регрессионная модель. Ко­эффициент детерминированности всегда заключен в диапазоне от 0 до 1. Если он равен 1, то функция точно проходит через табличные значения, если 0, то выбранный вид регрессионной модели предельно неудачен. Чем R2 ближе к 1, тем удачнее регрессионная модель.

Из трех выбранных моделей значение R2 наименьшее у линейной. Зна­чит, она самая неудачная (нам и так это было понятно). Значения же R2 у двух других моделей достаточно близки (разница меньше 0,01). Если определить погрешность решения данной задачи как 0,01, по критерию R2 эти модели нельзя разделить. Они одинаково удачны. Здесь могут всту­пить в силу качественные соображения. Например, если считать, что наи­более существенно влияние концентрации угарного газа проявляется при больших величинах, то, глядя на графики, предпочтение следует отдать квадратичной модели. Она лучше отражает резкий рост заболеваемости при больших концентрациях примеси.

Интересный факт: опыт показывает, что если человеку предложить на данной точечной диаграмме провести «на глаз» прямую так, чтобы точки были равномерно разбросаны вокруг нее, то он проведет линию, достаточ­но близкую к той, что дает МНК.







Дата добавления: 2015-10-12; просмотров: 1566. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия