Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Корреляционный анализ. Задача корреляционного анализа – установить возможную связь между двумя показателями, полученными на одной и той же выборке или на 2-х разных выборках





Задача корреляционного анализа – установить возможную связь между двумя показателями, полученными на одной и той же выборке или на 2-х разных выборках. При этом устанавливается, приводит ли увеличение какого-либо показателя к увеличению или уменьшению другого показателя.

Коэффициент корреляции колеблется в пределах от +1 (это полная положительная корреляция) до -1 (в случае полной отрицательной корреляции). Если этот коэффициент равен 0, то считается, что никакой корреляции между двумя рядами данных нет.

Корреляция – связь между двумя или несколькими элементами выборок или между двумя выборками.

Параметрическим показателем является коэффициент корреляции Пирсона (r). Для вычисления коэффициента корреляции по Пирсону сравнивают среднее и стандартное отклонение результатов двух измерений по формуле:

r= , где

- сумма произведений данных каждой пары

- средняя для данных X

- средняя для данных У

- число пар

- стандартное отклонение для распределения х

- стандартное отклонение для распределения у

Из непараметрических показателей используют коэффициент корреляции рангов Спирмена. С его помощью выявляют связь между рангами, соответствующих величин в 2-х рядах измерений. Коэффициент корреляции может быть значимым для анализа. Это можно проверить по таблице пороговых значений р для уровня значимости р=0,05.








Дата добавления: 2015-10-12; просмотров: 416. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия