Регулирование скорости АД изменением числа пар полюсов
Такой способ регулирования возможен только в многоскоростных асинхронных двигателях с короткозамкнутым ротором, так как число полюсов этого ротора, всегда равно количеству полюсов статора. В соответствии с формулой, которая рассматривалась выше, скорость двигателя можно регулировать изменением числа пар полюсов. Причём, изменение скорости происходит ступенчато, так как количество полюсов принимают только определённые значения – 1,2,3,4,5. Изменение количества полюсов достигается переключением катушечных групп статорной обмотки. При этом катушки соединяются различными схемами соединения, например “звезда - звезда” или “звезда – двойная звезда”. Первая схема соединения даёт изменение количества полюсов в соотношении 2:1. При этом обеспечивается постоянная мощность двигателя при переключении. Вторая схема изменяет количество полюсов в таком же соотношении, но при этом обеспечивает постоянный момент двигателя. Применение данного способа регулирования оправдано сохранением КПД и коэффициента мощности при переключении. Минусом же является более сложная и увеличенная конструкция двигателя, а также увеличение его стоимости. 42. Способы возбуждения синхронного генератора. Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле. До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.3, а). Обмотка возбуждения (ОВ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r 1 и подвозбудителя r 2. В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют. В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В (рис. 1.3, б). Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1 возбудителя В осуществляется от подвозбудителя ПВ – генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД. В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины. На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты (БЗ), обеспечивающий защиту обмотки возбуждения (ОВ) от перенапряжения и токовой перегрузки. Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности). Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов. 46. Параллельная работа синхронных генераторов. Для включения синхронного генератора на параллельную работу необходимо выполнить следующие условия: 1. Напряжение подключаемой машины должно быть равно напряжению сети или работающей машины. Подготовку к включению на параллельную работу синхронного генератора ведут следующим образом. Приводят во вращение первичный двигатель и регулируют его скорость вращения так, чтобы она была примерно равна номинальной. Затем возбуждают генератор и, следя за показаниями вольтметра, под- ключенного к зажимам статора, регулируют напряжение машины при помощи реостата в цепи возбуждения до тех пор, пока оно не станет равным напряжению сети. Воздействуя на регулятор первичного двигателя и наблюдая за показаниями частотомера, устанавливают более точно скорость машины так, чтобы частота генератора была равна частоте сети. Тем самым первое и второе условия для включения на параллельную работу будут выполнены. Для выполнения третьего условия, а также для установления полного равенства частот служат фазные лампы. Фазные лампы для машин однофазного тока включаются по двум схемам: на потухание (фиг. 255, а) и на горение (фиг. 255, б). При совпадении фаз сети и машины лампы, включенные по схеме а, погаснут, а по схеме б будут гореть полным накалом. В этот момент и нужно включить рубильник генератора. Для машин трехфазного тока фазные лампы включаются также по двум схемам: на потухание (фиг. 256, а) и на вращение света (фиг. 256, б). Лампы, включенные по схеме а, при одинаковом чередовании фаз сети и машины будут сначала быстро и одновременно мигать, затем мигание их становится все реже и реже и, когда лампы медленно погаснут, нужно включить рубильник генератора. Для более точного определения момента включения рубильника часто ставят так называемый нулевой вольтметр, имеющий двустороннюю шкалу. При одинаковом чередовании фаз сети и машины лампы, включенные по схеме б, будут мигать поочередно, и если их расположить по кругу, то получится впечатление вращающегося света. Скорость вращения света зависит от разности частот. Генератор нужно включить в момент, когда лампы, включенные накрест, загорятся полным накалом, а третья лампа погаснет. Иначе говоря, рубильник удобнее включить в момент, когда меняется направление вращения света. При неодинаковом порядке чередования фаз лампы, включенные по схеме а, дадут вращение света, а по схеме б будут одновременно загораться и потухать. Для изменения порядка чередования фаз машины два любых ее провода, подходящие к рубильнику, нужно поменять местами. Включение фазных ламп высоковольтных генераторов осуществляется через измерительные трансформаторы напряжения (гл. четырнадцатая, 171). Таким образом, с помощью фазных ламп мы можем определить противоположность фаз, установить равенство частот и порядок чередования фаз сети и подключаемой машины. Чередование фаз машины можно также определить, пользуясь особым прибором — фазоуказателем, представляющим собой небольшой асинхронный двигатель-Направление вращения диска фазоуказателя показывает порядок чередования фаз. Когда синхронный генератор работает параллельно с сетью, скорость вращения его остается постоянной, равной синхронной. Процесс подготовки генератора для включения его на параллельную работу называется синхронизацией. В последние годы получил распространение метод включения синхронных генераторов на параллельную работу, называемый самосинхронизацией. Сущность этого метода заключается в следующем. Первичным двигателем разворачивают генератор и устанавливают приблизительно синхронную скорость. Замыкают обмотку возбуждения на дополнительное сопротивление, равное 3—5-кратному значению ее сопро тивления. Включают рубильник, соединяющий генератор с сетью. Переключают обмотку возбуждения с дополнительного сопротивления к питающему ее источнику постоянного напряжения. После этого генератор сам входит в синхронизм. Проделаем следующий опыт. В цепь статора синхронного генератора включим амперметр, ваттметр и фазометр. В цепь возбуждения генератора включим амперметр. Включим гене- ратор на параллельную работу и дадим ему некоторую активную нагрузку. Увеличивая ток возбуждения при помощи реостата в цепи возбуждения, будем наблюдать показания приборов. Оказывается, что активная мощность, отдаваемая генератором в сеть, остается практически постоянной и во время опыта ваттметр будет давать неизменные показания. При неизменной активной нагрузке ток в цепи статора при некотором значении тока возбуждения получается минимальным. Это соответствует чисто активному току нагрузки генератора ( =1). Если к генератору подключить различные активные нагрузки, то каждому значению активной нагрузки будет соответствовать определенный ток возбуждения, при котором =1. При увеличении тока возбуждения сверх этого значения возникает отстающий реактивный ток. Фазометр будет показывать уменьшение и генератор будет отдавать в сеть отстающую реактивную мощность. Наоборот, если уменьшать ток возбуждения и сделать его меньшим указанного значения, то появится опережающий реактивный ток. Фазометр снова покажет уменьшение , и генератор будет для создания своего вращающегося поля потреблять из сети отстающую реактивную мощность. Зависимость тока статора (якоря) синхронного генератора от тока возбуждения при постоянной активной мощности называется U-образной характеристикой машины, получившей свое название за внешний вид кривой, напоминающей букву U. На фиг. 257 показана U-образная характеристика синхронного генератора. 51. Принцип действия машин постоянного тока. Конструкция машин постоянного тока. Машина постоянного тока — электрическая машина, предназначенная для преобразования механической энергии в электрическую постоянного тока (генератор) или для обратного преобразования (двигатель). Машина постоянного тока обратима. Машина постоянного тока образуется из синхронной обращённой конструкции, если её якорь снабдить коллектором, который в генераторном режиме играет роль выпрямителя, а в двигательном — преобразователя частоты. Благодаря наличию коллектора по обмотке якоря проходит переменный ток, а во внешней цепи, связанной с якорем, — постоянный.
|