Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Законы арксинуса и случайное блуждание





Давайте поговорим о проигрышах, но сначала скажем несколько слов о пер­вом и втором законах арксинуса. Эти принципы относятся к случайному блужданию. Поток торговых P&L в некоторых случаях может быть неслучай­ным, хотя обычно большинство потоков торговых прибылей и убытков почти случайны, что можно подтвердить серийным тестом и коэффициентом ли­нейной корреляции. Законы арксинуса предполагают, что вы заранее знаете сумму, которую можно выиграть или проиграть, и допускают, что сумма, которую можно выиграть, равна сумме, которую можно проиграть, и эта сумма постоянна. В нашей дискуссии мы допустим, что сумма, которую вы можете выиграть или проиграть, — это 1 доллар за каждую игру. Законы арксинуса также допускают, что у вас есть 50% шанс выиг­рыша и 50% шанс проигрыша. Таким образом, законы арксинуса предполагают игру, где математическое ожидание составляет 0. Эти предположения относятся к играм, которые значительно проще, чем тор­говля. Однако первый и второй законы арксинуса в точности относятся к только что описанной игре. Конечно, напрямую они не применимы к реальной торгов­ле, но для наглядности мы не будем различать игру и торговлю. Представим себе действительно случайную последовательность, такую, как бросок монеты1, где мы получаем 1 единицу, когда выигрываем, и теряем 1 единицу, когда проигрываем. Если бы мы строили кривую баланса за Х чис­ло бросков, то наносили бы точки с координатами (X, Y), где Х представляет собой номер броска, а Y — наш общий выигрыш или проигрыш после этого броска.

Введем понятие положительной области, когда кривая баланса находится выше оси Х или на оси X, если предыдущая точка была выше X. Таким же образом мы определим отрицательную область, когда кривая баланса находится ниже оси Х или на оси X, если предыдущая точка была ниже X. Логично предположить, что общее количество точек в положительной области будет примерно равно общему количеству точек в отрицательной области. На самом деле это не так. Если бро­сить монету N раз, то вероятность (Prob) осуществления К событий в положи­тельной области составит:

Символ ~ означает, что обе части стремятся к равенству в пределе. В этом случае, так как или К, или (N - К) стремятся к бесконечности, обе части уравнения будут стремиться к равенству.

Таким образом, если бросить монету 10 раз (N = 10), мы получим следующие вероятности нахождения в положительной области:

К Вероятность2
о 0,14795
  0,1061
  0,0796
  0,0695
  0,065
  0,0637
  0,065
  0,0695
  0,0796
  0,1061
  0,14795

 

Можно ожидать попадания в положительную область 5-ти из 10-ти бросков, но это наименее вероятный результат!

Наиболее вероятным результатом будет нахождение в положительной области при всех бросках или ни при одном!

Этот принцип формально описывается в первом законе арксинуса, который гласит:

Для фиксированного А (0 < А < 1), когда N стремится к бесконечности, время, проведенное в положительной области (т.е., когда К / N < А), будет определяться следующим образом:

N = количество бросков;

К = количество бросков в положительной области.

Даже при N = 20 вы получите очень хорошее приближение для вероятности.

Уравнение (2.14), то есть первый закон арксинуса, говорит нам, что с ве­роятностью 0,1 кривая баланса счета проведет 99,4% времени в одной облас­ти (положительной или отрицательной). С вероятностью 0,2 кривая баланса будет находиться в той же области 97,6% времени. С вероятностью 0,5 кривая баланса счета проведет в одной области более 85,35% времени. Настолько упряма кривая баланса простой монетки!

Существует также второй закон арксинуса, который основан на уравнении (2.14) и дает те же вероятности, что и первый закон арксинуса, но применяется к другому случаю, максимуму или минимуму кривой баланса. Второй закон аркси­нуса гласит, что максимальная (или минимальная) точка кривой баланса вероят­нее всего будет при начальном или конечном бросках, чем в середине игры. Рас­пределение будет таким же, как и в случае со временем, проведенным в одной об­ласти!

Если вы бросаете монету N раз, вероятность достижения максимума (или минимума) в точке К на кривой баланса также описывается уравнением (2.13):

Таким образом, если бросить монету 10 раз (N = 10), мы получим следующие ве­роятности максимума (или минимума) при К бросках:

к Вероятность
о 0,14795
  0,1061
  0,0796
  0,0695
  0,065
  0,0637
  0,065
  0,0695
  0,0796
  0,1061
  0,14795

 

Второй закон арксинуса говорит о том, что максимум (или минимум) вероятнее всего будет рядом с крайними точками кривой баланса.







Дата добавления: 2015-10-12; просмотров: 2124. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия