Основные задачи нанофотоники
Нынешнюю стадию развития нанофотоники можно сравнить с состоянием микроэлектроники до того, как был изобретен транзистор. Тем не менее, уже сегодня результаты работ в области нанофотоники – новые материалы и устройства – находят самое широкое применение. Во-первых, это всевозможные устройства отображения информации – дисплеи мобильных телефонов, персональных компьютеров и телевизоров. Во-вторых, это оптические запоминающие устройства – CD и DVD оптические диски, а также системы передачи информации по оптоволоконным линиям. Это то, что уже прочно заняло свое место в нашей повседневной жизни и непрерывно совершенствуется. Например, если сейчас объем информации оптического диска порядка 1 Гбайт, то в ближайшие год-два он составит 10–100 Гбайт. Оптические образцы таких дисков фирмы уже имеют. Стремительный прогресс намечается также и в оптоволоконных линиях передачи информации. Это в первую очередь связано с созданием новых оптических сред, наноструктурированных оптических волокон и фотонных кристаллов [19]. Другая достаточно широкая сфера применения нанофотоники, которая пока еще находится в стадии прикладных поисковых исследований, – это энергетика – системы преобразования световой энергии в электрическую (солнечные батареи) и электрической энергии в световую (электролюминесцентные материалы и устройства), а также системы химического записания световой энергии (например, получение водорода путем фоторазложения воды). Ну и, наконец, отдельная область нанофотоники – это новые интегрированные сенсорно-диагностические системы для контроля окружающей среды, состояния человека и его взаимодействия с окружающей средой и техносферой. Грядущий подъем нанофотоники на качественно новый уровень связан с созданием оптических логических устройств, оптоэлектронных процессоров и компьютеров с архитектурой, подобной мозгу человека, стереоскопической системой визуализации информации, подобной зрительному процессу [19]. В последнее время все чаще звучит слово «светодиоды»… Дело в том, что около 15% всей электроники, вырабатываемой на земном шаре, используется для преобразования в свет. Эффективность этого преобразования привычными для нас лампами накаливания составляет несколько процентов. Совершенно другой принцип заложен в светодиодах – фактически это прямое преобразование в полупроводнике энергии носителей тока в свет, которое происходит в результате их рекомбинации. Поэтому КПД здесь намного больше [19]. Исследователи бьются над тем, чтобы создать более дешевый органический материал для использования в светодиодных преобразователях. И такие материалы уже есть. Основу их составляют электропроводящие полимеры и различные органические и гибридные люминофоры – супермолекулярные комплексы и люминесцирующие квантовые точки. Характеристики органических светоизлучающих диодов в настоящее время практически не уступают полупроводниковым светодиодам, они также ярко светят, эффективно преобразуют электрическую энергию в световую и имеют невысокую цену. Однако, массовое их использование пока невозможно из-за нестабильности органических материалов в процессе их эксплуатации. · В самом начале вы сказали об использовании света в системах передачи информации по оптоволоконным линиям. Будут ли в этом направлении фотоники прорывы в ближайшие годы? · Главная проблема здесь – повышение плотности передачи информации. Дело в том, что световой пакет в процессе его движения по оптоволокну расплывается. Преодолеть дифракционное расплывание можно в нелинейном оптическом материале. Для этого надо создать другое оптоволокно, которое будет фокусировать оптический сигнал. Эта одна из интереснейших проблем фотоники – создание новых оптических сред, в которых можно реализовать нелинейности. Одной из таких сред являются наноструктурированные оптические волокна и фотонные кристаллы. · Это фантастические кристаллы, которые способны не отражать и не поглощать свет, а преломлять его совершенно чудесным образом? Когда свет огибает оптический материал, оставляя предметы, которые находятся за ним, невидимыми? · Действительно, это одно из самых удивительных явлений, которое можно реализовать с помощью фотонных кристаллов. · Каких технологических новинок, связанных с использованием света, можно ожидать в ближайшие годы? · Европейское сообщество поддерживает ряд программ в области диагностики. Одним из примеров – создание интегрированной диагностической системы состояния человека. Что она из себя представляет? Это пластиковый браслет на руке человека, в который вмонтирован оптический хемочип, контролирующий газовую среду выделений (вместо анализа крови), с помощью которого контролируется состояние его здоровья. Кроме того, в этом браслете – устройства для измерения температуры, кровяного давления и электронная схема (тоже полностью из органических материалов), с помощью которой вся информация передается на мобильный телефон или поликлинику. В этой системе нет батарей, она автономно питается с помощью устройства, которое преобразует свет и человеческое тепло в электрическую энергию. Еще одно интересное направление – оптическая томография. В настоящее время разрабатывается несколько различных систем для оптического томографа. Одна из них – оптическая когерентная томография – работает следующим образом. Фомтосекундный лазер испускает очень короткий импульс света, который проходит через ткани (в красной и ближней ИК области спектра биологическая ткань почти прозрачна) и где-то отражается. Время, за которое свет пробегает и отражается от какой-то точки объекта, фиксирует компьютер. Это позволяет создать по времени пробега и отражения объемную картинку ткани [19]. · Какое место в развитии нанофотоники занимает Россия по сравнению с другими странами? Есть ли у нас перспектива занять хотя бы часть мирового рынка в этой области? · Да, сейчас это довольно традиционный и в какой-то мере риторический вопрос. Я бы на него ответил так: в России есть очень большой задел в этой области, признанный научный потенциал и люди, которые могли бы его реализовать. То, как сложится реальная ситуация и какое место Россия займет в этой области, во многом будет зависеть и от самого научного сообщества, то есть от того, насколько правильно мы определим приоритеты наших исследований, и от того, как государство будет поддерживать это направление на финансовом и законодательном уровнях [19].
|