Равновесное состояние p-n-перехода.
Пусть внутренней границей раздела двух областей полупроводника с различным типом проводимости является плоскость МN (рис.1,а): слева от нее находится полупроводник p-типа с концентрацией акцепторов NА, справа-полупроводник n-типа с концентрацией доноров NД. Для простоты будем считать, что NА = NД. Энергетическая схема p- и n-областей в момент их мысленного соприкосновения представлена на рис.1,б.
а) б) Рис.1. Помимо основных носителей эти области содержат неосновные носители: n-область – дырки, p-область – электроны. Концентрация неосновных носителей на несколько порядков ниже, чем основных.
а) б) в) Рис.2. Объемные заряды простираются в n – область на глубину dn и в p - область на глубину dp (рис.1а.) Между заряженными слоями возникает контактная разность потенциалов, создающая потенциальный барьер, препятствующий переходу электронов из n- в p- область и дырок из p- в n- область. При этом все энергетические уровни, в том числе и уровень Ферми, в n-области понижаются, а в p-области повышаются. Состояние динамического равновесия устанавливается при условии, когда уровни Ферми оказываются на одной высоте (рис.2а). Высота потенциального барьера j0 равна разности уровней Ферми. В равновесном состоянии через p-n-переход проходят токи основных in и ip и неосновных ins и ips носителей. Полный ток, текущий через равновесный p-n-переход, равен нулю: i = (in + ip) – (ins + ips) = 0. (1) Замечательным свойством p-n-перехода, которое лежит в основе работы большинства полупроводниковых приборов, является его способность выпрямлять переменный электрический ток. Рассмотрим это свойство более подробно. Прямой ток. Приложим к p-n-переходу, находившемуся в равновесии, внешнюю разность потенциалов U в прямом направлении, подключив к p-области положительный полюс источника напряжения, а к n-области – отрицательный (рис.2, б). Эта разность потенциалов вызывает понижение потенциального барьера для основных носителей на величину qU, что приведет к увеличению в eqU/kT раз токов основных носителей in и ip, которые станут соответственно in = ins eqU/kT, ip = ips eqU/kT. (2) В то же время токи неосновных носителей ins и ips, величина которых не зависит от потенциального барьера p-n-перехода, остаются неизменными. Поэтому полный ток, текущий через p-n-переход, будет равен inp = (ins + ips) (eqU/kT- 1) (3) Этот ток называют прямым, так как он соответствует внешней разности потенциалов U, приложенной в прямом направлении. Прямой ток, обусловленный основными носителями, называют диффузионным. Обратный ток. Приложим теперь к p-n-переходу внешнюю разность потенциалов U в обратном направлении, подключив к p-области отрицательный полюс источника напряжения, а к n-области – положительный. Под действием этой разности потенциалов потенциальный барьер p-n-перехода повысится на величину qU (рис.2,в), что вызовет уменьшение в eqU/kT раз тока основных носителей in = ins e-qU/kT, ip = ips e-qU/kT. (4) Токи неосновных носителей сохраняются прежними. Результирующий обратный ток будет равен iобр = (ins + ips) (e-qU/kT - 1). (5) Обратный ток, обусловленный неосновными носителями, называют дрейфовым. Вольт - амперная характеристика (ВАХ). Объединяя (3) и (5), получим i = (ins + ips) (e±qU/kT- 1) (6) Это соотношение представляет собой уравнение вольт-амперной характеристики (ВАХ) p-n-перехода, выражающее количественную связь между током, текущим через переход, и разностью потенциалов, приложенной к переходу; знак “+” относится к прямому направлению U, знак “-” – к обратному (запорному).
iнас= ins + ips. (7) Практически она достигается Рис.3 уже при qU ≈; 4 kT, т.е. при U ≈;0,1 В. Из (7) видно, что iнас определяется потоком через p-n-переход неосновных носителей. Так как концентрация последних невысокая, то iнас является небольшой величиной. При приложении к p-n-переходу внешней разности потенциалов U в прямом направлении сила тока через переход растет по экспоненте и уже при незначительных напряжениях достигает большого значения.
|