Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пусть заданы векторы в прямоугольной системе координат


Пусть заданы векторы в прямоугольной системе координат

тогда линейные операции над ними в координатах имеют вид:

Скалярное произведение векторов.

Определение. Скалярным произведением векторов и называется число, равное произведению длин этих сторон на косинус угла между ними.

( × ) = ï ïï ïcosj

Свойства скалярного произведения:

1) ( × ) = ï ï2;

2) ( × ) = 0, если ^ или = 0 или = 0.

3) ( × ) =( × );

4) (; + ) = ( × )+( × );

5) (m ; ) =(;m ) = m( × ); m=const

Если рассматривать векторы в декартовой прямоугольной системе координат, то

( × ) =

Используя полученные равенства, получаем формулу для вычисления угла между векторами:

 

Формула для нахождения проекции вектора на вектор:

 

Векторное произведение векторов.

Определение. Векторным произведением векторов и называется вектор , удовлетворяющий следующим условиям:

1) вектор ортогонален векторам и

2) , и образуют правую тройку векторов.

3) , где j - угол между векторами и ,

Обозначается: или .


j

 

Свойства векторного произведения векторов:

1) ;

2) , если ïï или = 0 или = 0;

3)[ (m ) ]=[ (m )] = m[ ];

4) [ ( + )] = [ ]+ [ ];

5) Если заданы векторы: в декартовой прямоугольной системе координат с единичными векторами , то

[ ]=

 

6) Геометрическим смыслом векторного произведения векторов является площадь параллелограмма, построенного на векторах и .

 

 

Смешанное произведение векторов.

Определение. Смешанным произведением векторов , и называется число, равное скалярному произведению вектора на вектор, равный векторному произведению векторов и .

Обозначается (, , ).

Смешанное произведение по модулю равно объему параллелепипеда, построенного на векторах , и .

 

 

 

 

Свойствасмешанного произведения:

 

1)Смешанное произведение равно нулю, если:

а) хоть один из векторов равен нулю;

б) два из векторов коллинеарны;

в) векторы компланарны.

2)

3)

4)

5) Объем треугольной пирамиды, образованной векторами , и , равен ;

треугольной призмы , четырехугольной пирамиды

6)Если ; , то

7)Если >0, то векторы образуют правую тройку, если <0, то левую.




<== предыдущая лекция | следующая лекция ==>
СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ | Quot;БЕЗУСЛОВНЫЕ РОДИТЕЛИ", ЭЛФИ КОЭН, 2006 - Глава 1, Часть 1

Дата добавления: 2015-10-12; просмотров: 646. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия