Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Прямая в пространстве. общее уравнение прямой





- общее уравнение прямой

- каноническое уравнение прямой

- параметрическое уравнение прямой

- условие параллельности прямых

- условие перпендикулярности прямых

- угол между прямыми

Этапы перехода от общего уравнения прямой к каноническому:

1) Находится вектор .

2) Находится точка М0 (x0, y0, z0), любая из этих координат приравнивается к 0,

оставшиеся координаты находятся из системы уравнений общего уравнения прямой.

3) Составляется каноническое или параметрическое уравнение прямой.

Производные.

(u±v)’=u’±v’; (uv)’ = u’v + uv’; (u/v)’ = u’v - uv’/v2

(un)’=n*un-1*u’; yx’=yt’/xt’; F’=-Fx’/Fy’; (f(u(x)))’=f’(u(x))*u’(x)

функция произв-ая функция произв-ая
k   sin x cos x
kx k cos x -sin x
xn n*xn-1 tg x 1/ cos2 x
1/x -1/x2 ctg x -1/ sin2 x
1/xn -n/xn+1 sin2 x sin 2x
1/2 cos2 x -sin 2x
arcsin x
logax 1/x*ln a arccos x
ln x 1/x arctg x
ex ex arcctg x

Таблица неопределенных интегралов

Подведение под знак дифференциала:

Дифференциальные уравнения с пост-ми коэффициентами
корни k2+pk+q=0 вид общего решения
  D>0, k1≠k2
  D=0, k1=k2
  D<0, k1/2=α±βi
f(x) кратность корней вид yчаст.
  p*eαx (p-число) α≠k1, α≠k2 A*eαx
α=k1, α≠k2 A*x*eαx
α=k1, α=k2 A*x2*eαx
  Pn(x)*eαx (Pn(x)-выражение) α≠k1, α≠k2 (Anxn+An-1xn-1+…+A0)eαx
α=k1, α≠k2 (Anxn+…+A0)x*eαx
α=k1, α=k2 (Anxn+…+A0)x2*eαx
  Pn(x) k1≠0, k2≠0 Anxn+An-1xn-1+…+A0
k1=0 или k2=0 (Anxn+…+A0)x
  Mcosβx+Nsinβx k1/2≠α±βi Acosβx+Bsinβx
k1/2=α±β (Acosβx+Bsinβx)x

Методы интегрирования:

I. Интегрирование по частям:

 

 

1) u = xn

 


2) u =

 

 


3) u = ex

 

II. Замена переменных:

 

 

Таблица первообразных
функция первообразная функция первообразная
xn (n≠-1) xn+1/n+1 cos x sin x
1/ x ln x 1/sin2 x -ctg x
1/ xn -1/(n-1)*xn-1 1/cos2 x tg x
1/ 2* sin(kx+b) -1/k*cos(kx+b)
k kx cos(kx+b) 1/k*sin(kx+b)
ex ex (kx+b)n (kx+b)n+1/k(n+1)
ax ax/ln a 1/kx+b 1/k*ln(kx+b)
sin x -cos x ekx+b 1/k* ekx+b
       






Дата добавления: 2015-10-15; просмотров: 330. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия