Двухобмоточные трансформаторы
Двухобмоточный трансформатор (рисунок 1, а) можно представить в виде Г-образной схемы замещения (рисунок 1, б). Продольная часть схемы замещения содержит r т и x т –активное и реактивное сопротивления трансформатора. Эти сопротивления равны сумме соответственно активных и реактивных сопротивлений первичной и приведенной к ней вторичной обмоток. В такой схеме замещения отсутствует трансформация, т.е. отсутствует идеальный трансформатор, но сопротивление вторичной обмотки приводится к первичной. При этом приведении сопротивление вторичной обмотки умножается на квадрат коэффициента трансформации. Если сети, связанные трансформатором, рассматриваются совместно, причем параметры сетей не приводятся к одному базисному напряжению, то в схеме замещения трансформатора учитывается идеальный трансформатор. а – условное обозначение; б – Г-образная схема замещения; Рисунок 1 –Двухобмоточный трансформатор
Поперечная ветвь схемы (ветвь намагничивания) состоит из активной и реактивной проводимостей gт и bт. Активная проводимость соответствует потерям активной мощности в стали трансформатора от тока намагничиванияIµ. Реактивная проводимость определяется магнитным потоком взаимоиндукции в обмотках трансформатора. В расчетах электрических сетей двухобмоточные трансформаторы при Uв.ном≤220 кВ представляют упрощенной схемой замещения (рисунок 1, в). В этой схеме вместо ветви намагничивания учитываются в виде дополнительной нагрузки потери мощности в стали трансформатора или потери холостого хода ΔPх+jΔQх. Для каждого трансформатора известны следующие параметры (каталожные данные): Sном –номинальная мощность, МВ·А; Uв.ном, Uн.ном –номинальные напряжения обмоток высшего и низшего напряжений, кВ; ДPх – активные потери холостого хода, кВт; Iх% – ток холостого хода, % Iном; ΔPк – потери короткого замыкания, кВт; uк% – напряжение короткого замыкания, % Uном. По этим данным можно определить все параметры схемы замещения трансформатора (сопротивления и проводимости), а также потери мощности в нем. Проводимости ветви намагничивания определяются результатами опыта холостого хода (XX). В этом опыте размыкается вторичная обмотка, а к первичной подводится номинальное напряжение. Ток в продольной части схемы замещения равен нулю, а к поперечной приложено Uном(рисунок 2, а). Трансформатор потребляет в этом режиме только мощность, равную потерям холостого хода, т.е. (рисунок 2, б):
Проводимости, См, определяются следующими выражениями:
где напряжения выражены в киловольтах, а мощности –в мегаваттах и мегаварах. а, б – опыт холостого хода: в, г – опыт короткого замыкания Рисунок 2 – Схемы опытов холостого хода и короткого замыкания
Потери активной мощности в стали определяются в основном напряжением и приближенно предполагаются не зависящими от тока и мощности нагрузки(
где Поэтому
Отметим, что С учетом (2.3)проводимость
Сопротивления трансформатора rт и xт определяются по результатам опыта короткого замыкания (КЗ). В этом опыте замыкается накоротко вторичная обмотка, а к первичной обмотке подводится такое напряжение, при котором в обеих обмотках трансформатора токи равны номинальному. Это напряжение и называется напряжением короткого замыкания
и
В современных мощных трансформаторах Умножая последнее выражение на В (2.4), (2.5) сопротивления получаются в омах при подстановке напряжений в киловольтах, а мощностей –в мегавольт-амперах и в мегаваттах. Потери активной мощности в rт зависят от тока и мощности нагрузки Если подставить в последнее выражение
Потери реактивной мощности в
Для трансформатора, через который проходят ток нагрузки
Если на подстанции с суммарной нагрузкой
Эти же выражения можно получить и другим способом. Если подставить в (2.6), (2.7)вместо
|