Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Системы линейных алгебраических уравнений





Лабораторная работа 2

Тема: Линейные системы. Фундаментальная система решений. Применения теоремы Кронекера-Капелли.

Цель: оказание студентам помощи в овладении навыками решения задач, отражающих тематику данной лабораторной работы; научить студентов исследовать СЛАУ, применяя теорему Кронекера-Капелли, и находить фундаментальную систему решения.

Теоретическое обоснование

Системы линейных алгебраических уравнений

Система линейных уравнений с переменными имеет вид:

(1)

где () – произвольные числа называющиеся коэффициентами при переменных, а – свободными членами уравнений.

Система (1) называется однородной, если все её свободные члены равны нулю, если хотя бы одно из чисел отлично от нуля, то система называется неоднородной.

Решением системы называется такая совокупность чисел , , …, , при подстановке которых данное уравнение системы обращается в верное равенство.

Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если решений нет.

Совместная система называется определённой, если она имеет един­ственное решение, и неопределенной, если она имеет более одного ре­шения.

Две системы уравнений называются равносильными или эквива­лентными, если они имеют одно в тоже множество решения. С помо­щью элементарных преобразований системы уравнений (например, ум­ножение обеих частей уравнения на числа не равные нулю; сложение уравнений системы) получается система равносильная данной.

Теорема (Кронекера - Капелли):

Для того чтобы система (1) линейных алгебраических уравнений относительно неизвестных была совместна (имела решение), необходи­мо и достаточно, чтобы ранг основной матрицы (А) системы и ранг

расширенной матрицы (А, В) системы (1) были равны, т. е. .

Исследовать систему линейных уравнений означает определить, совместна она или нет, а для совместной системы, – выяснить определена она или нет. При этом возможны три варианта:

1) Если , то система несовместна.

2) Если (где – число переменных), то система совместна и определена.

3) Если , то система совместна и неопределена.

Для исследования систем линейных уравнений и нахождения их решений можно использовать метод Гаусса.

Пусть дана однородная система линейных уравнений:

(2)

или в матичной форме .

Однородная система всегда совместна, так как существует тривиальное решение . однородная система неопределена тогда и только тогда, когда .







Дата добавления: 2015-10-15; просмотров: 753. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия