Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример 3




Найти общее решение системы линейных уравнений методом Гаусса, выделив базисные неизвестные, и одно частное решение.

Решение

Проведем элементарные преобразование расширенной матрицы системы по методу Гаусса:

+
+
+
×(-2) ×(-2) ×(-3)

+
+
×1 ×(-1)
~ ~ ~

~ .

Из последней ступенчатой системы видно, что ранг матрицы системы равен , ранг расширенной матрицы равен , а количество переменных равно , так как , то система совместна и неопределена.

Количество базисных переменных равно . В качестве главных переменных можно выбрать , и , соответствующие столбцам ненулевого минора третьего порядка: , в качестве свободных переменных – и .

Запишем систему, соответствующую полученной матрице:

Из третьего уравнения выражаем через , получим: . Подставляя это выражение во второе уравнение, получим: . Подставляя выражения для и в первое уравнение, получим: . Обозначив , а получим общее решение системы

Придавая свободным переменным любые значения, будем получать частные решения системы. Частным решением системы будет являться решение .

Вопросы для защиты работы

1. Однородные и неоднородные системы.

2. Совместные и несовместные системы.

3. Что называется решением системы?

4. Сформулировать теорему Кронекера-Капелли.

5. Что означает «исследовать систему уравнений»?

6. Что можно сказать о множестве решений системы линейных уравнений, если ранг матрицы этой системы и ранг расширенной матрицы равны нулю?

7. Фундаментальная система решений?







Дата добавления: 2015-10-15; просмотров: 185. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2019 год . (0.002 сек.) русская версия | украинская версия