Студопедия — ГЛАВА III ЭВОЛЮЦИЯ ХИМИЧЕСКОЙ КАРТИНЫ МИРА
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ГЛАВА III ЭВОЛЮЦИЯ ХИМИЧЕСКОЙ КАРТИНЫ МИРА

2.1. Первые модели Мира

Звездное небо во все времена занимало воображение людей. Почему зажигаются звезды? Сколько их сияет в ночи? Далеко ли они от нас? Есть ли границы у звездной Вселенной? С глубокой древности человек задумывался над этими и многими другими вопросами, стремился понять и осмыслить устройство того большого мира, в котором мы живем.

Самые ранние представления людей о нем сохранились в сказках и легендах. Прошли века и тысячелетия, прежде чем возникла и получила глубокое обоснование и развитие наука о Вселенной, раскрывшая нам замечательную простоту, удивительный порядок мироздания. Недаром еще в древней Греции ее называли Космосом. Это слово первоначально означало «порядок», «красота».

Системы мира - это представления о расположении в пространстве и движении Земли, Солнца, Луны, планет, звезд и других небесных тел.

В древнеиндийской книге, которая называется «Ригведа», что значит «Книга гимнов», можно найти описание - одно из самых первых в истории человечества - всей Вселенной как единого целого. Согласно «Ригведе», она устроена не слишком сложно. В ней имеется, прежде всего, Земля. Она представляется безграничной плоской поверхностью - «обширным пространством». Эта поверхность покрыта сверху небом. А небо - это голубой, усеянный звездами «свод». Между небом и Землей - «светящийся воздух».

От науки это было очень далеко. Но важно здесь другое. Замечательна и грандиозна сама дерзкая цель - объять мыслью всю Вселенную. Отсюда берет истоки уверенность в том, что человеческий разум способен осмыслить, понять, разгадать ее устройство, создать в своем воображении полную картину мира.

Движение планет. Наблюдая за годичным перемещением Солнца среди звезд, древние люди научились заблаговременно определять наступление того или иного времени года. Они разделили полосу неба вдоль эклиптики на 12 созвездий, в каждом из которых Солнце находится примерно месяц. Как уже отмечалось, эти созвездия были названы зодиакальными. Все они, за исключением одного, носят названия животных.

С предутренним восходом того или иного созвездия древние люди связывали свои сельскохозяйственные работы, и это отражено в самих названиях созвездий. Так, появление на небе созвездия Водолея указывало

на ожидаемое половодье, появление Рыб - на предстоящий ход рыбы для метания икры. С утренним появлением созвездия Девы начиналась уборка хлеба, которая проводилась преимущественно женщинами. Спустя месяц на небе появлялось соседнее созвездие Весы, в это время как раз происходило взвешивание и подсчет урожая.

Еще за 2000 лет до н. э. древние наблюдатели заметили среди зодиакальных созвездий пять особых светил, которые, постоянно меняя свое положение на небе, переходят из одного зодиакального созвездия в другое. В последствии греческие астрономы назвали эти светила планетами, т.е. «блуждающими». Это Меркурий, Венера, Марс, Юпитер и Сатурн, сохранившие в своих названиях до наших дней имена древнеримских богов. К блуждающим светилам были причислены также Луна и Солнце.

Вероятно, прошло много столетий, прежде чем древним астрономам удалось установить определенные закономерности в движении планет и, прежде всего, установить промежутки времени, по истечении которых положение планеты на небе по отношению к Солнцу повторяется. Этот промежуток времени позже был назван синодическим периодом обращения планеты. После этого можно было делать следующий шаг - строить общую модель мира, в которой для каждой из планет было бы отведено определенное место и, пользуясь которой, можно было бы заранее предсказать положение планеты на несколько месяцев или лет вперед.

По характеру своего движения на небесной сфере по отношению к Солнцу планеты (в нашем понимании) подразделяются на две группы. Меркурий и Венера названы внутренними или нижними, остальные - внешними или верхними.

Угловая скорость Солнца больше скорости прямого движения верхней планеты. Поэтому Солнце постепенно обгоняет планету. Как и для внутренних планет, в момент, когда направление на планету и на Солнце совпадает, наступает соединение планеты с Солнцем. После того как Солнце обгонит планету, она становится видимой перед его восходом, во второй половине ночи. Момент, когда угол между направлением на Солнце и направлением на планету составляет 180 градусов, называется противостоянием планеты. В это время она находится в середине дуги своего попятного движения. Удаление планеты от Солнца на 90 градусов к востоку называется восточной квадратурой, а на 90 градусов к западу - западной квадратурой. Все упомянутые здесь положения планет относительно Солнца

(с точки зрения земного наблюдателя) называются конфигурациями.

При раскопках древних городов и храмов Вавилонии обнаружены десятки тысяч глиняных табличек с астрономическими текстами. Их расшифровка показала, что древне вавилонские астрономы внимательно следили за положением планет на небе; они сумели определить их синодические периоды обращения и использовать эти данные при своих расчетах.

Несмотря на высокий уровень астрономических сведений народов

древнего Востока, их взгляды на строение мира ограничивались непосредственными зрительными ощущениями. Поэтому в Вавилоне сложились взгляды, согласно которым Земля имеет вид выпуклого острова, окруженного океаном. Внутри Земли будто бы находится «царство мертвых». Небо - это твердый купол, опирающийся на земную поверхность и отделяющий «нижние воды» (океан, обтекающий земной остров) от «верхних» (дождевых) вод. На этом куполе прикреплены небесные светила, над небом будто бы живут боги. Солнце восходит утром, выходя из восточных ворот, и заходит через западные ворота, а ночью оно движется под Землей.

Согласно представлениям древних египтян, Вселенная имеет вид большой долины, вытянутой с севера на юг, в центре ее находится Египет. Небо уподоблялось большой железной крыше, которая поддерживается на столбах, на ней в виде светильников подвешены звезды.

В Древнем Китае существовало представление, согласно которому Земля имеет форму плоского прямоугольника, над которым на столбах поддерживается круглое выпуклое небо. Разъяренный дракон будто бы согнул центральный столб, вследствие чего Земля наклонилась к востоку. Поэтому все реки в Китае текут на восток. Небо же наклонилось на запад, поэтому все небесные светила движутся с востока на запад.

И лишь в греческих колониях на западных берегах Малой Азии (Иония), на юге Италии и в Сицилии в четвертом веке до нашей эры началось бурное развитие науки, в частности, философии, как учения о природе. Именно здесь на смену простому созерцанию явлений природы и их наивному толкованию приходят попытки научно объяснить эти явления, разгадать их истинные причины.

Одним из выдающихся древнегреческих мыслителей был Гераклит Эфесский (ок. 530 - 470 гг. до н. э.). Это ему принадлежат слова: «Мир, единый из всего, не создан никем из богов и никем из людей, а был, есть и будет вечно живым огнем, закономерно воспламеняющимся и закономерно угасающим...» Тогда же Пифагор Самосский (ок. 580 - 500 гг. до н. э.) высказал мысль о том, что Земля, как и другие небесные тела, имеет форму шара. Вселенная представлялась Пифагору в виде концентрических, вложенных друг в друга прозрачных хрустальных сфер, к которым будто бы прикреплены планеты. В центре мира в этой модели помещалась Земля, вокруг нее вращались сферы Луны, Меркурия, Венеры, Солнца, Марса, Юпитера и Сатурна. Дальше всех находилась сфера неподвижных звезд.

Первую теорию строения мира, объясняющую прямое и попятное движение планет, создал греческий философ Евдокс Книдский (ок. 408 - 355 гг. до н. э.). Он предложил, что у каждой планеты имеется не одна, а несколько сфер, скрепленных друг с другом. Одна из них совершает один оборот в сутки вокруг оси небесной сферы по направлению с востока на запад. Время обращения другой (в обратную сторону) предполагалось равным периоду обращения планеты. Тем самым объяснялось движение

планеты вдоль эклиптики. При этом предполагалось, что ось второй сферы наклонена к оси первой под определенным углом. Комбинация с этими сферами еще двух позволяла объяснить попятное движение по отношению к эклиптике. Все особенности движения Солнца и Луны объяснялось с помощью трех сфер. Звезды Евдокс разместил на одной сфере, вмещающей в себя все остальные. Таким образом, все видимое движение небесных светил Евдокс свел к вращению 27 сфер.

Уместно напомнить, что представление о равномерном, круговом, совершенно правильном движении небесных тел высказал философ Платон. Он же высказал предположение, что Земля находится в центре мира, что вокруг нее обращается Луна, Солнце, далее утренняя звезда Венера, звезда Гермеса, звезды Ареса, Зевса и Кроноса. У Платона впервые встречаются названия планет по имени богов, полностью совпадающие с вавилонскими. Платон впервые сформулировал математикам задачу: найти, с помощью каких равномерных и правильных круговых движений можно «спасти явления, представляемые планетами». Другими словами, Платон ставил задачу построить геометрическую модель мира, в центре которой, безусловно, должна была находиться Земля.

Усовершенствованием системы мира Евдокса занялся ученик Платона Аристотель (384 - 322 гг. до н.э.). Так как взгляды этого выдающегося философа - энциклопедиста безраздельно господствовали в физике и астрономии в течение почти двух тысяч лет, то остановимся на них поподробнее.

Аристотель, вслед за философом Эмпедоклом (ок. 490 - 430 гг. до н.э.), предположил существование четырех «стихий»: земли, воды, воздуха и огня, из смешения которых будто бы произошли все тела, встречающиеся на Земле. По Аристотелю, стихии вода и земля естественным образом стремятся двигаться к центру мира («вниз»), тогда как огонь и воздух движутся «вверх» к периферии и то тем быстрее, чем ближе они к своему «естественному» месту. Поэтому в центре мира находится Земля, над ней расположены вода, воздух и огонь. По Аристотелю, Вселенная ограничена в пространстве, хотя ее движение вечно, не имеет ни конца, ни начала. Это возможно как раз потому, что, кроме упомянутых четырех элементов, существует еще и пятая, неуничтожимая материя, которую Аристотель назвал эфиром. Из эфира будто бы и состоят все небесные тела, для которых вечное круговое движение - это естественное состояние. «Зона эфира» начинается около Луны и простирается вверх, тогда как ниже Луны находится мир четырех элементов. Вот как описывает свое понимание мироздания сам Аристотель: «Солнце и планеты обращаются около Земли, находящейся неподвижно в центре мира. Наш огонь, относительно цвета своего, не имеет никакого сходства со светом солнечным, ослепительной белизны. Солнце не состоит из огня; оно есть огромное скопление эфира; теплота Солнца причиняется действием его на эфир во время об-

ращения вокруг Земли. Кометы суть скоропреходящие явления, которые быстро рождаются в атмосфере и столь же быстро исчезают. Млечный Путь есть не что иное, как испарения, воспламененные быстрым вращением звезд около Земли... Движения небесных тел, вообще говоря, происходят гораздо правильнее, чем движения, замечаемые на Земле; ибо, так как тела небесные совершеннее любых других тел, то им приличествует самое правильное движение, и, вместе с тем, самое простое, а такое движение может быть только круговым, потому что в этом случае движение бывает и равномерным. Небесные светила движутся свободно, подобно богам, к которым они ближе, чем к жителям Земли; поэтому светила при движении своем не нуждаются в отдыхе и причину своего движения заключают в самих себе. Высшие области неба, более совершенные, содержащие в себе неподвижные звезды, имеют поэтому наиболее совершенное движение - всегда вправо. Что же касается части неба, ближайшей к Земле, а поэтому и менее совершенной, то эта часть служит местопребыванием гораздо менее совершенных светил, каковы планеты. Эти последние движутся не только вправо, но и влево, и притом по орбитам, наклоненным к орбитам неподвижных звезд. Все тяжелые тела стремятся к центру Земли, а так как всякое тело стремится к центру Вселенной, то поэтому и Земля должна находиться неподвижно в этом центре». При построении своей системы мира Аристотель использовал представления Евдокса о концентрических сферах, на которых расположены планеты и которые вращаются вокруг Земли. По Аристотелю, первопричиной этого движения является «первый двигатель» - особая вращающаяся сфера, расположенная за сферой «неподвижных звезд», которая и приводит в движение все остальное. По этой модели лишь одна сфера в каждой из планет вращается с востока на запад, остальные три - в противоположном направлении. Аристотель считал, что действие этих трех сфер должно компенсироваться дополнительными тремя внутренними сферами, принадлежащими той же планете. Именно в этом случае на каждую последующую (по направлению к Земле) планету действует лишь суточное вращение. Таким образом, в системе мира Аристотеля движение небесных тел описывалось с помощью 55 твердых хрустальных сферических оболочек.

Позже в этой системе мира было выделено восемь концентрических слоев (небес), которые передавали свое движение друг другу. В каждом таком слое насчитывалось семь сфер, движущих данную планету.

Во времена Аристотеля высказывались и другие взгляды на строение мира, в частности, что не Солнце обращается вокруг Земли, а Земля вместе с другими планетами обращается вокруг Солнца. Против этого Аристотель выдвинул серьезный аргумент: если бы Земля двигалась в пространстве, то это движение приводило бы к регулярному видимому перемещению звезд на небе. Как мы знаем, этот эффект (годичное параллактическое смещение звезд) был открыт лишь в середине XIX века, через 2150 лет после Аристотеля...

На склоне своих лет Аристотель был обвинен в безбожии и бежал из Афин. На самом деле в своем понимании мира он колебался между материализмом и идеализм. Его идеалистические взгляды и, в частности, представление о Земле как центре мироздания было приспособлено для защиты религии. Вот почему в середине второго тысячелетия нашей эры борьба против взглядов Аристотеля стала необходимым условием развития науки...

Современникам Аристотеля уже было известно, что планета Марс в противостоянии, а также Венера во время попятного движения значительно ярче, чем в другие моменты. По теории сфер они должны были бы оставаться всегда на одинаковом расстоянии от Земли. Именно поэтому тогда возникали и другие представления о строении мира.

Так, Гераклит Понтийский (388 - 315 гг. до н.э.) предполагал, что Земля движется «...вращательно, около своей оси, наподобие колеса, с запада на восток вокруг собственного центра». Он высказал также мысль, что орбиты Венеры и Меркурия являются окружностями, в центре которых находится Солнце. Вместе с Солнцем эти планеты будто бы и обращаются вокруг Земли.

Еще более смелых взглядов придерживался Аристарх Самосский (ок. 310 - 230 гг. до н.э.). Выдающийся древнегреческий ученый Архимед (ок. 287 - 212 гг. до н.э.) в своем сочинении «Псаммит» («Исчисление песчинок»), обращаясь к Гелону Сиракузскому, писал о взглядах Аристарха так: «Ты знаешь, что, по представлению некоторых астрономов, мир имеет форму шара, центр которого совпадает с центром Земли, а радиус равен длине прямой, соединяющей центры Земли и Солнца. Но Аристарх Самосский в своих «Предложениях», написанных им против астрономов, отвергая это представление, приходит к заключению, что мир гораздо больших размеров, чем только что указано. Он полагает, что неподвижные звезды и Солнце не меняют своего места в пространстве, что Земля движется по окружности вокруг Солнца, находящегося в его центре, и что центр сферы неподвижных звезд совпадает с центром Солнца, а размер этой сферы таков, что окружность, описываемая по его предположению, Землей, находится к расстоянию неподвижных звезд в таком же отношении, в каком центр шара находится к его поверхности».

Становление астрономии как точной науки началось благодаря работам выдающегося греческого ученого Гиппарха. Он первый начал систематические астрономические наблюдения и их всесторонний математический анализ, заложил основы сферической астрономии и тригонометрии, разработал теорию движения Солнца и Луны и на ее основе - методы предвычисления затмений.

Гиппарх обнаружил, что видимое движение Солнца и Луны на небе является неравномерным. Поэтому он стал на точку зрения, что эти светила движутся равномерно по круговым орбитам, однако центр круга сме-

щен по отношению к центру Земли. Такие орбиты были названы эксцентрами. Гиппарх составил таблицы, по которым можно было определить положение Солнца и Луны на небе на любой день года. Что же касается планет, то, по замечанию Птолемея, он «не сделал других попыток объяснения движения планет, а довольствовался приведением в порядок сделанных до него наблюдений, присоединив к ним еще гораздо большее количество своих собственных. Он ограничился указанием своим современникам на неудовлетворительность всех гипотез, при помощи которых некоторые астрономы думали объяснить движение небесных светил».

Благодаря работам Гиппарха астрономы отказались от мнимых хрустальных сфер, предположенных Евдоксом, и перешли к более сложным построениям с помощью эпициклов и деферентов, предложенных еще до Гиппарха Аполлоном Пергским. Классическую форму теории эпициклических движений придал Клавдий Птолемей.

Система мира Птолемея

Главное сочинение Птолемея «Математический синтаксис в 13 книгах» или, как его назвали позже арабы, «Альмагест» («Величайшее») стал известным в средневековой Европе лишь в XII в. В 1515 г. он был напечатан на латинском языке в переводе с арабского, а в 1528 г. в переводе с греческого. Трижды «Альмагест» издавался на греческом языке. В 1912 г. он издан на немецком языке.

«Альмагест» - это настоящая энциклопедия античной астрономии. В этой книге Птолемей сделал то, что не удавалось сделать ни одному из его предшественников. Он разработал метод, пользуясь которым можно было рассчитать положение той или другой планеты на любой наперед заданный момент времени. Это ему далось нелегко, и в одном месте он заметил: «Легче, кажется, двигать самые планеты, чем постичь их сложное движение...».

Комбинируя наблюдения с расчетами, Птолемей методом последовательных приближений получил, что отношения радиусов эпициклов к радиусам деферентов для Меркурия, Венеры, Марса, Юпитера и Сатурна равны соответственно 0.376, 0.720, 0.658, 0.192 и 0.103. Любопытно, что для предвычисления положения планеты на небе не было необходимости знать расстояния до планеты, а лишь упомянутое отношение радиусов эпициклов и деферентов.

При построении своей геометрической модели мира Птолемей учитывал тот факт, что в процессе своего движения планеты несколько отклоняются от эклиптики. Поэтому для Марса, Юпитера и Сатурна он «наклонил» плоскости деферентов к эклиптике и плоскости эпициклов к плоскостям деферентов. Для Меркурия и Венеры он ввел колебания вверх и вниз с помощью небольших вертикальных кругов. В целом для объяснения всех замеченных в то время особенностей в движении планет Птолемей ввел

40 эпициклов. Система мира Птолемея, в центре которой находится Земля, называется геоцентрической.

Кроме отношения радиусов эпициклов и деферентов для сопоставления теории с наблюдениями необходимо было задать периоды обращения по этим кругам. По Птолемею, полный оборот по окружности эпициклов все верхние планеты совершают за тот же промежуток времени, что и Солнце по эклиптике, т. е. за год. Поэтому радиусы эпициклов этих планет, направленные к планетам, всегда параллельны направлению с Земли на Солнце. У нижних планет - Меркурия и Венеры - период обращения по эпициклу равен промежутку времени, в течение которого планета возвращается к исходной точке на небе. Для периодов обращений центра эпицикла по окружности деферента картина обратная. У Меркурия и Венеры они равны году, поэтому центры их эпициклов всегда лежат на прямой, соединяющей солнце и Землю. Для внешних планет они определяются временем, в течение которого планета, описав полную окружность на небе, возвращается к тем же звездам.

Вслед за Аристотелем Птолемей попытался опровергнуть представление о возможном движении Земли. Он писал: «Существуют люди, которые утверждают, будто бы ничто не мешает допустить, что небо неподвижно, а Земля вращается около своей оси от запада к востоку, и что она делает такой оборот каждые сутки. Правда, говоря о светилах, ничто не мешает для большей простоты допустить это, если принимать в расчет только видимые движения. Но эти люди не сознают, до какой степени смешно такое мнение, если присмотреться ко всему, что совершается вокруг нас и в воздухе. Если мы согласимся с ними, - чего в действительности нет, - что самые легкие тела вовсе не движутся или движутся так же, как и тела тяжелые, между тем как, очевидно, воздушные тела движутся с большей скоростью, чем тела земные; если бы мы согласились с ними, что предметы самые плотные и самые тяжелые имеют собственное движение, быстрое и постоянное, тогда как на самом деле они с трудом движутся от сообщаемых им толчков, - все-таки эти люди должны были бы сознаться, что Земля вследствие своего вращения имела бы движение значительно быстрее всех тех, какие происходят вокруг нее, ибо она совершала бы такую большую окружность в такой малый промежуток времени. Таким образом, тела, которые поддерживали бы Землю, казались бы всегда движущимися по противоположному с ней направлению, и никакое облако, ничто летящее или брошенное никогда не казалось бы направляющимся к востоку, ибо Земля опередила бы всякое движение в этом направлении».

С современной точки зрения, можно сказать, что Птолемей слишком переоценил роль центробежной силы. Он также придерживался ошибочного утверждения Аристотеля, что в поле тяжести тела падают со скоростями, пропорциональными их массам...

В целом же, как заметил А. Паннекук, «Математическое сочинение» Птолемея «было карнавальным шествием геометрии, праздником глубо-

чайшего создания человеческого ума в представлении Вселенной, труд Птолемея предстает перед нами как великий памятник науки античной древности...».

После высокого расцвета античной культуры на европейском континенте наступил период застоя и регресса. Этот мрачный промежуток времени продолжительностью более тысячи лет был назван средневековьем. Ему предшествовало превращение христианства в господствующую религию, при которой не было места для высокоразвитой науки античной древности. В это время произошел возврат к наиболее примитивным представлениям о плоской Земле.

И лишь начиная с XI в. под влиянием роста торговых отношений, с усилением в городах нового класса - буржуазии, духовная жизнь в Европе начала пробуждаться. В середине XIII в. философия Аристотеля была приспособлена к христианской теологии, отменены решения церковных соборов, запрещавших натурфилософские идеи великого древнегреческого философа. Взгляды Аристотеля на устройство мира вскоре стали неотъемлемыми элементами христианской веры. Теперь уже нельзя было сомневаться в том, что Земля имеет форму шара, установленного в центре мира, и что вокруг него обращаются все небесные светила. Система Птолемея стала как бы дополнением к Аристотелю, помогающим проводить конкретные расчеты положений планет.

Основные параметры своей модели мира Птолемей определил в высшей степени искусно и с высокой точностью. Со временем, однако, астрономы начали убеждаться в том, что между истинным положением планеты на небе и расчетным существуют расхождения. Так, в начале XII века планета Марс оказалась на два градуса в стороне от того места, где ей надлежало быть по таблицам Птолемея.

Чтобы объяснить все особенности движения планет на небе, приходилось вводить для каждой из них до десяти и более эпициклов со всё уменьшающимися радиусами так, чтобы центр меньшего эпицикла обращался по кругу большего. К XVI веку движение Солнца, Луны и пяти планет объяснялось с помощью более чем 80 кругов! И всё же наблюдения, разделённые большими промежутками времени, было трудно «подогнать» под эту схему. Приходилось вводить новые эпициклы, несколько изменять их радиусы, смещать центры деферентов по отношению к центру Земли. В конечном итоге геоцентрическая система Птолемея, перегруженная эпициклами и эквантами, рухнула от собственной тяжести...

Система мира Коперника

Книга Коперника, вышедшая в год его смерти, в 1543 году, носила скромное название: «О вращении небесных сфер». Но это было полное ниспровержение взгляда Аристотеля на мир. Сложная махина полых прозрачных хрустальных сфер отошла в прошлое. С этого времени началась новая эпоха в нашем понимании Вселенной. Продолжается она и поныне.

Благодаря Копернику мы узнали, что Солнце занимает надлежащее ему положение в центре планетной системы. Земля же никакой не центр мира, а одна из рядовых планет, обращающихся вокруг Солнца. Так все стало на свои места. Строение Солнечной системы было наконец разгадано.

Дальнейшие открытия астрономов пополнили семью больших планет. Их девять: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон. В таком порядке они занимают свои орбиты вокруг Солнца. Открыто множество малых тел Солнечной системы - астероидов и комет. Но это не изменило новой Коперниковой картины мира. Напротив, все эти открытия только подтверждают и уточняют ее.

Теперь мы понимаем, что живем на небольшой планете, похожей на шар. Земля вращается вокруг Солнца по орбите, не слишком отличающейся от окружности. Радиус этой окружности близок к 150 миллионам километров.

Расстояние от Солнца до Сатурна - самой дальней из известных во времена Коперника планет - приблизительно в десять раз больше радиуса земной орбиты. Это расстояние совершенно правильно определил еще Коперник. Размеры Солнечной системы - расстояние от Солнца до орбиты девятой планеты, Плутона, еще почти в четыре раза больше и составляет приблизительно 6 миллиардов километров.

Такова картина Вселенной в нашем непосредственном окружении. Это и есть мир по Копернику.

Но Солнечная система еще не вся Вселенная. Можно сказать, что это только наш маленький мирок. А как же далекие звезды? О них Коперник не рисковал высказывать никакого определенного мнения. Он просто оставил их на прежнем месте, на дальней сфере, где были они у Аристотеля, и лишь говорил, и совершенно правильно, что расстояние до звезд во множество раз больше размеров планетных орбит. Как и античные ученые, он представлял Вселенную замкнутым пространством, ограниченным этой сферой.

В ясную безлунную ночь, когда ничто не мешает наблюдению, человек с острым зрением увидит на небосводе не более двух - трех тысяч мерцающих точечек. В списке, составленном во 2 веке до нашей эры знаменитом древнегреческим астрономом Гиппархом и дополненном позднее Птолемеем, значится 1022 звезды. Гевелий же, последний астроном, производивший такие подсчеты без помощи телескопа, довел их число до 1533.

Но уже в древности подозревали о существовании большого числа звезд, невидимых глазом. Демокрит, великий ученый древности, говорил, что белесоватая полоса, протянувшаяся через все небо, которую мы называем Млечным Путем, есть в действительности соединение света множества невидимых по отдельности звезд. Споры о строении Млечного Пути продолжались веками. Решение - в пользу догадки Демокрита - пришло в 1610 году, когда Галилей сообщил о первых открытиях, сделанных на небе

с помощью телескопа. Он писал с понятным волнением и гордостью, что теперь удалось «сделать доступными глазу звезды, которые раньше никогда не были видимыми и число которых, по меньшей мере, в десять раз больше числа звезд, известных издревле».

Но и это великое открытие всё ещё оставляло мир звёзд загадочным. Неужели все они, видимые и невидимые, действительно сосредоточены в тонком сферическом слое вокруг Солнца?

Ещё до открытия Галилея была высказана совершенно неожиданная, по тем временам замечательно смелая мысль. Она принадлежит Джордано Бруно, трагическая судьба которого всем известна. Бруно выдвинул идею о существовании множества миров и о том, что наше Солнце - это одна из звёзд Вселенной. Всего только одна из великого множества, а не центр всей Вселенной. Но тогда и любая другая звезда тоже вполне может обладать своей собственной планетной системой.

Если Коперник указал место Земли отнюдь не в центре мира, то Бруно и Солнце лишил этой привилегии.

Идея Бруно породила немало поразительных следствий. Из неё вытекала оценка расстояний до звёзд. Действительно, Солнце - это звезда, как и другие, но только самая близкая к нам. Поэтому-то оно такое большое и яркое. А на какое расстояние нужно отодвинуть светило, чтобы и оно выглядело так, как, например, Сириус? Ответ на этот вопрос дал голландский астроном Гюйгенс (1629 - 1695). Он сравнил блеск этих двух небесных тел, и вот что оказалось: Сириус находится от нас в сотни раз дальше, чем Солнце.

Чтобы лучше представить, сколь велико расстояние до звезды, скажем, что луч света, пролетающий за одну секунду 300 тысяч километров, затрачивает на путешествие от Сириуса к нам несколько лет. Астрономы говорят в этом случае о расстоянии в несколько световых лет. По современным уточненным данным, расстояние до Сириуса - 8,7 световых лет. А расстояние от нас до солнца всего 8 световых минут.

Конечно, разные звезды отличаются друг от друга (это и учтено в современной оценке расстояние до Сириуса). Поэтому определение расстояний до них и сейчас часто остаётся очень трудной, а иногда и просто неразрешимой задачей для астрономов, хотя со времени Гюйгенса придумано для этого немало новых способов.

Замечательная идея Бруно и основанный на ней расчет Гюйгенса стали решительным шагом к овладению тайными Вселенной. Благодаря этому границы наших знаний о мире сильно раздвинулись, они вышли за пределы Солнечной системы и достигли звёзд.

2.2. Изучение галактики - Млечный путь

С XVII века важнейшей целью астрономов стало изучение Млечного Пути - этого гигантского собрания звезд, которые Галилей увидел в свой телескоп. Усилия многих поколений астрономов - наблюдателей были нацелены на то, чтобы узнать, каково полное число звёзд Млечного Пути, определить его действительную форму и границы, оценить размеры. Лишь в XIX веке удалось понять, что это единая система, заключающая в себе все видимые звёзды. На равных правах со всеми входит в эту систему и наше Солнце, а с ним Земля и планеты. Причем располагаются они далеко не в её центре, а на её окраине.

Потребовались ещё многие десятилетия тщательных наблюдений и глубоких раздумий, прежде чем перед астрономами раскрылось во всей полноте строение Галактики. Так стали называть звёздную систему, которую мы видим, конечно, изнутри как полосу Млечного Пути (слово «Галактика» образовано от новогреческого «галактикос», что значит «млечный»).

Млечный путь, светлая серебристая полоса звезд опоясывает всё небо, составляя основную часть нашей Галактики. Млечный путь наиболее ярок в созвездии Стрельца, где находятся самые мощные облака звезд. Наименее ярок он в противоположной части неба. Из этого нетрудно вывести заключение, что солнечная система не находится в центре Галактики, который от нас виден в направлении созвездия Стрельца. Чем дальше от плоскости Млечного Пути, тем меньше там слабых звезд, и тем менее далеко в этих направлениях тянется звездная система. В общем, наша Галактика занимает пространство, напоминающее линзу или чечевицу, если смотреть на нее сбоку. Размеры Галактики были намечены по расположению звезд, которые видны на больших расстояниях. Это цефеиды и горячие гиганты. Диаметр Галактики примерно равен 3000 пк (Парсек (пк) - расстояние, с которым большая полуось земной орбиты, перпендикулярная лучу зрения, видна под углом в 1". 1 Парсек = 3,26 светового года = 206265 а.е. = 3*1013 км) или 100000 световых лет (световой год - расстояние, пройденное светом в течение года), но четкой границы у нее нет, потому что звездная плотность постепенно сходит на нет.

В центре галактики расположено ядро диаметром 1000-2000 пк - гигантское уплотненное скопление звезд. Оно находится от нас на расстоянии почти 10000 пк (30000 световых лет) в направлении созвездия Стрельца, но почти целиком скрыто плотной завесой облаков, что препятствует визуальным и фотографическим обычным наблюдениям этого интереснейшего объекта Галактики. В состав ядра входит много красных гигантов и короткопериодических цефеид.

Звезды верхней части главной последовательности, а особенно сверхгиганты и классические цефеиды, составляют более молодые населения.

Оно располагается дальше от центра и образует сравнительно тонкий слой или диск. Среди звезд этого диска находится пылевая материя и облака газа. Субкарлики и гиганты образуют вокруг ядра и диска Галактики сферическую систему.

Масса нашей галактики оценивается сейчас разными способами, равна 2•1011 масс Солнца (масса Солнца равна 2•1030 кг.), причем 1/1000 ее заключена в межзвездном газе и пыли. Масса Галактики в Андромеде почти такая же, а масса Галактики в Треугольнике оценивается в 20 раз меньше. Поперечник нашей галактики составляет 100000 световых лет. Путем кропотливой работы московский астроном В.В. Кукарин в 1944 г. нашел указания на спиральную структуру Галактики, причем оказалось, что мы живем между двумя спиральными ветвями, бедными звездами.

Существует гипотеза, согласно которой Млечный Путь - это плод космических катаклизмов, продукт столкновения Галактик! Почти все Галактики рано или поздно столкнутся со своими соседями. Эту участь ожидает и наш Млечный Путь. Навстречу ему несётся туманность Андромеды. Пока нас разделяет 2,2 миллиона световых лет. Эта туманность громадным сводом нависает над нашей космической родиной. Кажется, что в любой момент она готова упасть на нас. Ее сердцевина светится так ярко, словно здесь пылают тысячи Солнц. Струи раскаленного газа летят во все стороны. Одна из них тянется прямо к Земле, будто мечтая ее схватить. Под этим сводом лежит наша галактика - плоский, линзообразный диск, сложенный из миллиардов ослепительно белых звезд. Новые светила вспыхивают, старые гаснут. Идет обычная жизнь, но пройдет пять миллиардов лет, и вот тогда-то начнутся различные изменения. Все сообщество звезд, расположенное в этой части космического пространства, всколыхнет очередная космическая катастрофа, хаос вернется. В результате должно произойти слияние нашей галактики с туманностью Андромеды, образовав единое целое - некую яйцевидную галактику.

Все это в будущем, но уже сегодня мы замечаем некие изменения, происходящие на Земле под влиянием космологических факторов. Например, изменение климата - растет среднегодовая температура, во многих регионах увеличивается уровень проникающего ультрафиолетового излучения, опасного для жизни. Можно предположить, что если температура будет расти и дальше, то через какое-то время она достигнет критической отметки. После этого все последующие изменения климата станут хаотическими, непредсказуемыми. Такой поворот событий предвещает грандиозные катаклизмы. За последние пятьсот лет произошло пять крупных климатических катастроф. Чем они были вызваны? Возможно, причину их следует искать в глубинах Космоса. Ведь наша планета, мчащаяся сквозь вечный небосвод, периодически оказывается в той части Галактики, где вероятность катастроф гораздо выше обычного. Солнечная система окажется в гуще космических событий, когда она попадет в один из спираль-

ных рукавов, переполненных снующими всюду звездами. Нам предстоит здесь провести целых 60 миллионов лет. В таком соседстве мало хорошего. Приближаясь к Солнцу, «суетливые светила» будут вносить беспорядок в хрупкий строй планет и комет нашей системы, вызывая новые беды.

Приведем пример катастроф на Земле. Первая катастрофа произошла около 440 миллионов лет назад, когда температура Земли заметно понизилась, и это привело к вымиранию многих теплолюбивых видов животных и обитателей моря. Около 360 миллионов лет назад произошла вторая катастрофа, которая привела к гибели морских беспозвоночных и большинство бесчелюстных. В это время земноводные активно покидают морские глубины и завоевывают новую среду обитания - сушу. Около 250 миллионов лет назад развернулась активная тектоническая деятельность: литосферные плиты сталкивались, континенты дрейфовали, земная кора разламывалась, в бесчисленные трещины изливалась вулканическая лава. Климат стал суше. Обширные районы покрылись льдом. Исчезли громадные внутренние моря. После этих катаклизмов, длившихся не один миллион лет, вымерло более половины всех видов животных, населявших нашу планету. Жизнь на Земле едва не погибла. Около 210 миллионов лет назад сокращается обширный класс пресмыкающихся. Их нишу постепенно заполняют динозавры. Около 65 миллионов лет назад, после столкновения с небольшим космическим телом, достигавшим всего нескольких километров в поперечнике, климатический баланс Земли полностью нарушился. Внезапные перепады температуры выкашивали животных, не успевших приспособиться к переменам. Когда стихии пришли в равновесие и прекратились пожары, похолодания, потепления, выяснилось, что динозавры исчезли. Они владели Землей на протяжении 170 миллионов лет. Итак, последняя катастрофа пошла человечеству на пользу. Динозавры погибли, и началось стремительное развитие млекопитающих.

Напрашивается вопрос: «Сумеет ли человек пережить грядущие катастрофы? Не разделит ли он судьбу других животных, например, динозавров, исчезнувших с лица Земли по воле космических сил?». Многое зависит от того, с какой скоростью совершатся катастрофические перемены. Если процесс будет протекать постепенно, то человек как биологический вид может к ним приспособиться, пусть даже миллионы отдельных индивидов вымрут и останутся лишь носители востребованных генетических свойств. За всю историю люди сумели приспособиться к самым необычным условиям жизни. Они расселялись среди вечных льдов и выжженных пустынь, в непроходимых лесах и недоступных горах. Генетический арсенал человека необычайно широк, и к тому же это единственное живое существо, которое стало вмешиваться в собственную генетику, пытаясь настроить ее «в ритм эволюции». Кроме того, человек - это единственное живое существо, сумевшее вырваться за пределы нашей планеты. Все это дает нам шанс уцелеть в хаосе космоса и воспринимать любые рассказы о

насылаемых бедах как предостережение, а вовсе не как окончательный приговор. Воспользуемся ли мы этим шансом?

Звездные скопления

В некоторых местах на небе в телескоп, а кое-где даже невооруженным глазом можно различить тесные группы звезд, связанные взаимным тяготением, или звездные скопления.

Существует два вида звездных скоплений: рассеянные и шаровые.

Рассеянные скопления состоят обычно из десятков или сотен звезд главной последовательности и сверхгигантов со слабой концентрацией к центру.

Шаровые же скопления состоят обычно из десятков или сотен звезд главной последовательности и красных гигантов. Иногда они содержат короткопериодические цефеиды. Размер рассеянных скоплений - несколько парсек. Пример их скопления Глады и Плеяды в созвездии Тельца. Размер шаровых скоплений с сильной концентрацией звезд к центру - десяток парсек. Известно более 100 шаровых и сотни рассеянных скоплений, но в Галактике последних должно быть десятки тысяч.

Кроме звезд в состав Галактики входит еще рассеянная материя, чрезвычайно рассеянное вещество, состоящее из межзвездного газа и пыли. Оно образует туманности. Туманности бывают диффузными (клочковатой формы) и планетарными. Светлые они оттого, что их освещают близлежащие звезды. Пример: газопылевая туманность в созвездии Ориона и темная пылевая туманность Конская голова.

Расстояние до туманности в созвездии Ориона равно 500 пк, диаметр центральной части туманности - 6 пк, масса приблизительно в 100 раз больше массы Солнца.

Во Вселенной нет ничего единственного и неповторимого в том смысле, что в ней нет такого тела, такого явления, основные и общие свойства которого не были бы повторены в другом теле, другими явлениями.

Внешний вид Галактик чрезвычайно разнообразен, и некоторые из них очень живописны. Эдвин Пауэлла Хаббл (1889-1953), выдающийся американский астроном - наблюдатель, избрал самый простой метод классификации Галактик по внешнему виду, и нужно сказать, что хотя в последствии другими выдающимися исследователями были внесены разумные предположения по классификации, первоначальная система, выведенная Хабблом, по прежнему остаётся основой классификации Галактик.

Хаббл предложил разделить все Галактики на 3 вида:

Эллиптические - обозначаемые Е (elliptical);

Спиральные (Spiral);

Неправильные - обозначаемые (irregular).

Эллиптические Галактики внешне невыразительные. Они имеют вид гладких эллипсов или кругов с постепенным круговым уменьшением яр-

кости от центра к периферии. Ни каких дополнительных частей у них нет, потому что эллиптические Галактики состоят из второго типа звездного населения. Они построены из звезд красных и желтых гигантов, красных и желтых карликов и некоторого количества белых звезд не очень высокой светлости. Отсутствуют бело-голубые сверхгиганты и гиганты, группировки которых можно наблюдать в виде ярких сгустков, придающих структурность системе, нет пылевой материи которая, в тех Галактиках, где она имеется, создаёт темные полосы, оттеняющие форму звездной системы.

Внешне эллиптические Галактики отличаются друг от друга в основном одной чертой - большим или меньшим сжатием (NGG и 636, NGC 4406, NGC 3115 и др.).

С несколько однообразными эллиптическими Галактиками контрастируют спиральные Галактики являющиеся, может быть, даже самыми живописными объектами во Вселенной. У эллиптических Галактик внешний вид говорит о статичности, стационарности. Спиральные Галактики, наоборот, являют собой пример динамики формы. Их красивые ветви, выходящие из центрального ядра и как бы теряющие очертания за пределами Галактики, указывает на мощное стремительное движение. Поражает также многообразие форм и рисунков ветвей. Как правило, у Галактики имеются две спиральные ветви, берущие начало в противоположных точках ядра, развивающиеся сходным симметричным образом и теряющиеся в противоположных областях периферии, Галактики. Однако известны примеры, когда в Галактике действует более двух спиральных ветвей. В других случаях спирали две, но они неравны - одна значительно более развита, чем вторая. Примеры спиральных Галактик: М31, NGC 3898, NGC 1302, NGC 6384, NGC 1232 и др.

Перечисленные типы Галактик характеризовались симметричностью форм, определенным характером рисунка. Но встречается большое число Галактик неправильной формы без какой-либо закономерности структурного строения.

Хаббл дал им обозначение от английского слова «irregular», что в переводе с английского означает неправильные. Неправильная форма у Галактики может быть вследствие того, что она не успела принять правильной формы из-за малой плотности в ней материи или из-за молодого возраста. Есть и другая возможность: Галактика может стать неправильной вследствие искажения формы в результате взаимодействия с другой галактикой. По-видимому, эти оба случая встречаются среди неправильных Галактик, и, может быть, с этим связанно разделение неправильных Галактик на 2 подтипа.

Подтип 2 характеризуется сравнительно высокой поверхностью, яркостью и сложностью неправильной структуры (NGM 25744, NGC 5204). Французский астроном Вакулер в некоторых Галактиках этого подтипа, например, Магелановых облаках, обнаружил признаки спиральной разрушенной структуры.

Неправильные Галактики другого подтипа, обозначаемого 1, отличаются очень низкой поверхностью и яркостью. Эта черта выделяет их из среды Галактик всех других типов. В то же время она препятствует обнаружению этих Галактик, вследствие чего удалось выявить только несколько Галактик подтипа 1 и расположенных сравнительно близко (Галактика в созвездии Льва).

Только 3 Галактики можно наблюдать невооруженным глазом: Большое Магеланово облако, Малое Магеланово облако и туманность Андромеды.

Невращающаяся звездная система по истечении некоторого срока должна принять форму шара. Такой вывод следует из теоретических исследований. Он подтверждается на примере шаровых скоплений, которые вращаются и имеют шарообразную форму.

Если же звездная система сплюснута, то это означает, что она вращается. Следовательно, должны вращаться и эллиптические Галактики, за исключением тех, из них, которые шарообразны, не имеют сжатия. Вращение происходит вокруг оси, которая перпендикулярна главной плоскости симметрии. Галактика сжата вдоль оси своего вращения. Впервые вращение галактик обнаружил в 1914 г. американский астроном Слайфер.

Особый интерес представляют Галактики с резко повышенной светимостью. Их принято называть радиогалактиками. Наиболее выдающаяся Галактика - ЛебедьА. Это слабая двойная Галактика с чрезвычайно тесно расположенными друг к другу компонентами, являющимися мощнейшим дискретным источником. Объекты подобные галактике ЛебедьА, безусловно, очень редки в метагалактике, но ЛебедьА - не единственный объект подобного рода во Вселенной. Они должны находиться на громадном расстоянии друг от друга (более 200 Мпс). Поток проходящего от них радиоизлучения в виду большого расстояния слабее, чем от источника ЛебедьА.

Когда английские и австралийские астрономы, применив интерференционный метод в 1963 г. определили с большой точностью положения значительного числа дискретных источников радиоизлучения, они одновременно определили и другие угловые размеры некоторого числа радиоисточников. Диаметры большинства из них исчислялись минутами или десятками секунд дуги, но у 5 источников, а именно у ЗС48, ЗС147, ЗС196, ЗС273 и ЗС286, размеры оказались меньше секунды дуги.

Но поток их радиоизлучения не уступали потокам радиоизлучения других фирм дискретных источников, превосходящих их по площади излучения в десятки тысяч раз. Эти звездоподобные источники радиоизлучения были названы квадрами. Сейчас их открыто более 1000. Блеск квадра не остается постоянным. Массы квадров достигают миллиона солнечных масс. Источник энергии квадров до сих пор не ясен. Есть предположения, что квадры - это исключительно активные ядра очень далеких Галактик.

Местное сверхскопление

Многие, а может быть, и почти все Галактики собраны в различные коллективы, которые называют группами, скоплениями и сверхскоплениями, смотря по тому, сколько их там. В группу может входить всего три или четыре Галактики, а в сверхскопление - до тысячи или даже нескольких десятков тысяч. Наша Галактика, туманность Андромеды и ещё более тысячи таких же объектов входят в так называемое Местное сверхскопление. Оно не имеет четко очерченной формы.

Приблизительно так же устроены и другие сверхскопления, лежащие далеко от нас, но довольно отчетливо различимые в современные крупные телескопы.

До недавнего времени астрономы полагали, что эти объекты - самые крупные образования во Вселенной и что какие-либо ещё большие системы отсутствуют. Но вот выяснилось, что это не так.

Несколько лет назад астрономы составили удивительную карту Вселенной. На ней каждая Галактика представлена всего лишь точкой. На первый взгляд они рассеяны на карте хаотично. Если же приглядеться внимательно, то можно обнаружить группы, скопления и сверхскопления, которые выглядят здесь цепочками точек. Но что поразительнее всего, карта позволяет обнаружить, что некоторые такие цепочки соединяются и пересекаются, образуя какой-то сетчатый или ячеистый узор, напоминающий кружева или, может быть, пчелиные соты с размерами ячеек в 100-300 миллионов световых лет.

Покрывают ли такие «сетки» всю Вселенную, еще предстоит выяснить. Но несколько отдельных ячеек, очерченных сверхскоплениями, удалось подробно изучить. Внутри таких ячеек Галактик почти нет, все они собраны в «стенки».

Ячейка - это предварительное, рабочее название для самого крупного образования во Вселенной. Более крупных систем в природе нет. Это показывает карта Вселенной. Астрономия достигла, наконец, завершения одной из самых грандиозных своих задач: вся последовательность, или, как ещё говорят, иерархия, астрономических систем теперь целиком известна. И всё же...

2.3. Типы звёзд и их эволюция

Зарождение звезд

Как и все тела в природе, звёзды не остаются неизменными, они рождаются, эволюционируют, и, наконец, "умирают". Чтобы проследить жизненный путь звёзд и понять, как они стареют, необходимо знать, как они возникают. В прошлом это представлялось большой загадкой; современные астрономы уже могут с большой уверенностью подробно описать пути, ведущие к появлению ярких звёзд на нашем ночном небосводе.

Не так давно астрономы считали, что на образование звезды из межзвёздных газа и пыли требуются миллионы лет. Но в последние годы были получены поразительные фотографии области неба, входящей в состав Большой Туманности Ориона, где в течение нескольких лет появилось небольшое скопление звёзд. На снимках 1947 г. в этом месте была видна группа из трёх звездоподобных объектов. К 1954 г. некоторые из них стали продолговатыми, а к 1959 г. эти продолговатые образования распались на отдельные звёзды - впервые в истории человечества, люди наблюдали рождение звёзд буквально на глазах. Этот беспрецедентный случай показал астрономам, что звёзды могут рождаться за короткий интервал времени, и казавшиеся ранее странными рассуждения о том, что звёзды обычно возникают в группах, или звёздных скоплениях, оказались справедливыми.

Каков же механизм их возникновения? Почему за многие годы астрономических визуальных и фотографических наблюдений неба только сейчас впервые удалось увидеть "материализацию" звёзд? Рождение звезды не может быть исключительным событием: во многих участках неба существуют условия, необходимые для появления этих тел.

В результате тщательного изучения фотографий туманных участков Млечного Пути удалось обнаружить маленькие чёрные пятнышки неправильной формы, или глобулы, представляющие собой массивные скопления пыли и газа. Они выглядят чёрными, так как не испускают собственного света и находятся между нами и яркими звёздами, свет от которых они заслоняют. Эти газово-пылевые облака содержат частицы пыли, очень сильно поглощающие свет, идущий от расположенных за ними звёзд. Размеры глобул огромны - до нескольких световых лет в поперечнике. Несмотря на то, что вещество в этих скоплениях очень разрежено, общий объём их настолько велик, что его вполне хватает для формирования небольших скоплений звёзд, по массе близких к Солнцу. Для того чтобы представить себе, как из глобул возникают звёзды, вспомним, что все звёзды излучают и их излучение оказывает давление. Разработаны чувствительные инструменты, которые реагируют на давление солнечного света, проникающего сквозь толщу земной атмосферы. В чёрной глобуле под действием давления излучения, испускаемого окружающими звёздами, происходит сжатие и уплотнение вещества. Внутри глобулы гуляет "ветер", разметающий по всем направлениям газ и пылевые частицы, так что вещество глобулы пребывает в непрерывном турбулентном движении.

Глобулу можно рассматривать как турбулентную газово-пылевую массу, на которую со всех сторон давит излучение. Под действием этого давления объём, заполняемый газом и пылью, будет сжиматься, становясь, всё меньше и меньше. Такое сжатие протекает в течение некоторого времени, зависящего от окружающих глобулу источников излучения и интенсивности последнего. Гравитационные силы, возникающие из-за концентрации массы в центре глобулы, тоже стремятся сжать ее, заставляя

вещество падать к её центру. Падая, частицы вещества приобретают кинетическую энергию и разогревают газово-пылевое облако.

Падение вещества может длиться сотни лет. Вначале оно происходит медленно, неторопливо, поскольку гравитационные силы, притягивающие частицы к центру, ещё очень слабы. Через некоторое время, когда глобула становится меньше, а поле тяготения усиливается, падение начинает происходить быстрее. Но, как мы уже знаем, глобула огромна, не менее светового года в диаметре. Это значит, что расстояние от её внешней границы до центра может превышать 10 триллионов километров. Если частица от края глобулы начнёт падать к центру со скоростью немногим менее 2 км/с, то центра она достигнет только через 200000 лет. Наблюдения показывают, что скорости движения газа и пылевых частиц на самом деле гораздо больше, а потому гравитационное сжатие происходит значительно быстрее.

Падение вещества к центру сопровождается весьма частыми столкновениями частиц и переходом их кинетической энергии в тепловую. В результате температура глобулы возрастает. Глобула становится протозвездой и начинает светиться, так как энергия движения частиц перешла в тепло, нагрела пыль и газ. В этой стадии протозвезда едва видна, так, как основная доля её излучения приходится на далёкую инфракрасную область. Звезда ещё не родилась, но зародыш её уже появился. Астрономам пока неизвестно, сколько времени требуется протозвезде, чтобы достигнуть той стадии, когда она начинает светиться как тусклый красный шар и становится видимой. По различным оценкам, это время колеблется от тысяч до нескольких миллионов лет. Однако, помня о появлении звёзд в Большой Туманности Ориона, стоит, пожалуй, считать, что наиболее близка к реальности оценка, которая даёт минимальное значение времени.

Почти всю свою жизнь звезда сохраняет температуру и размер практически постоянными. Значение главной последовательности заключается в том, что большинство обычных звёзд оказываются нормальными, то есть лишёнными каких-либо особенностей. Мы вправе ожидать, что эти звёзды подчиняются определённым зависимостям, подобным, например, упомянутой главной последовательности. Большинство звёзд оказываются на этой наклонной линии - главной последовательности, потому что звезда может прийти на эту линию всего лишь за несколько сотен тысяч лет, а покинув её, прожить ещё несколько сотен миллионов лет. Большинство звёзд заведомо остаётся на главной последовательности в течение миллиардов лет. Рождение и смерть - ничтожно малые мгновенья в жизни звезды. Наше Солнце, являющееся обычной звездой, находится на этой последовательности уже в течение 5-6 млрд. лет и, по-видимому, проведёт на ней ещё столько же времени, так как звёзды с такой массой и таким химическим составом, как у Солнца, живут 10-12 млрд. лет. Звёзды много меньшей массы находятся на главной последовательности примерно 50 млрд. лет. Если же масса звезды в 30 раз превосходит солнечную, то

время её пребывания на главной последовательности составит всего около 1 млн. лет.

Вернёмся к рассмотрению процессов, происходящих при рождении звезды: она продолжает сжиматься, сжатие сопровождается возрастанием температуры. Температура ползёт вверх, и вот огромный газовый шар начинает светиться, его уже можно наблюдать на фоне тёмного ночного неба как тусклый красноватый диск. Значительная доля энергии его излучения по-прежнему приходится на инфракрасную область спектра. Но это ещё не звезда. По мере того как вещество протозвезды уплотняется, оно всё быстрее падает к центру, разогревая ядро звезды до всё более высоких температур. Наконец температура достигает 10 млн. К, и тогда начинают протекать термоядерные реакции - источник энергии всех звёзд во Вселенной. Как только термоядерные процессы включаются в действие, космическое тело превращается в полноценную звезду.

Сжимаясь, пыль и газ образуют протозвезду; её вещество представляет собой типичный образец вещества окружающей нас части космического пространства. Говоря об образце вещества Вселенной, мы подразумеваем, что этот кусочек межзвездной среды на 89% состоит из водорода, на 10% - из гелия; такие элементы, как кислород, азот, углерод, неон и т. п. составляют в нём менее 1%, а все металлы, вместе взятые, - не более 0,25%. Таким образом, звезда в основном состоит из тех элементов, которые чаще всего встречаются во Вселенной. И поскольку богаче всего во Вселенной представлен водород, то, конечно, любые термоядерные реакции должны протекать с его участием. Кое-где встречаются уголки космического пространства с повышенным содержанием тяжёлых элементов, но это лишь местные аномалии - остатки давних звёздных взрывов, разбросавших и рассеявших в окрестности тяжёлые элементы. Мы не будем останавливаться на таких аномальных областях с повышенной концентрацией тяжёлых элементов, а сосредоточим внимание на звёздах, состоящих в основном из водорода.

Когда температура в центре протозвезды достигает 10 млн. К, начинаются сложные (но детально изученные) термоядерные реакции, в ходе которых из ядер водорода (протонов) образуются ядра гелия; каждые четыре протона, объединяясь, создают атом гелия. Сначала, когда соединяются друг с другом два протона, возникает атом тяжёлого водорода, или дейтерия. Затем последний сталкивается с третьим протоном, и в результате реакции рождается лёгкий изотоп гелия, содержащий два протона и один нейтрон.

В сумятице, которая царит в ядре звезды, быстро движущиеся атомы лёгкого гелия иногда сталкиваются друг с другом, в результате чего появляется атом обычного гелия, состоящий из двух протонов и двух нейтронов. Два лишних протона возвращаются обратно в горячую смесь, чтобы когда-нибудь опять вступить в реакцию, порождающую гелий. В этом

процессе около 0,7% массы превращается в энергию. Описанная цепочка реакций - один из важных термоядерных циклов, протекающих в ядрах звёзд при температуре около 10 млн. К. Некоторые астрономы считают, что при более низких температурах могут протекать другие реакции, в которых участвуют литий, бериллий и бор. Но они тут же делают оговорку, что если такие реакции и имеют место, то их относительный вклад в генерацию энергии незначителен.

Когда температура в недрах звезды снова увеличивается, в действие вступает ещё одна важная реакция, в которой в качестве катализатора участвует углерод. Начавшись с водорода и углерода-12, такая реакция приводит к образованию азота-13, который спонтанно распадается на углерод-13 - изотоп углерода, более тяжёлый, чем тот, с которого реакция начиналась. Углерод-13 захватывает ещё один протон, превращаясь в азот-14. Последний подобным же путём становится кислородом-15. Этот элемент также неустойчив и в результате спонтанного распада превращается в азот-15. И наконец азот-15, присоединив к себе четвёртый протон, распадается на углерод-12 и гелий.

Таким образом, побочным продуктом этих термоядерных реакций является углерод-12, который может вновь положить начало реакциям данного типа. Объединение четырёх протонов приводит к образованию одного атома гелия, а разница в массе четырёх протонов и одного атома гелия, составляющая около 0,7% от первоначальной массы, проявляется в виде энергии излучения звезды. На Солнце каждую секунду 564 млн. т водорода превращается в 560 млн. т гелия, а разница - 4 млн. т вещества - превращается в энергию и излучается в пространство. Важно, что механизм генерации энергии в звезде зависит от температуры.

Именно температура ядра звезды определяет скорость процессов. Астрономы считают, что при температуре около 13 млн. К углеродный цикл относительно не существенен.

Следовательно, при такой температуре преобладает протонный цикл. При увеличении температуры до 16 млн. К, вероятно, оба цикла дают равный вклад в процесс генерации энергии. Когда же температура ядра поднимается выше 20 млн. К, преобладающим становится углеродный цикл.

Как только энергия звезды начинает обеспечиваться за счёт ядерных реакций, гравитационное сжатие, с которого начался весь процесс, прекращается. Теперь самоподдерживающаяся реакция может продолжаться в течение времени, длительность которого зависит от начальной массы звезды и составляет примерно от 1 млн. лет до 100 млрд. лет и больше. Именно в этот период звезда достигает главной последовательности и начинает свою долгую жизнь, протекающую почти без изменений. Целую вечность проводит звезда в этой стадии. Ничего особенного с ней не происходит, она не привлекает к себе пристального внимания. Теперь это всего-навсего полноценный член звёздной колонии, затерянный среди множества собратьев.

Однако процессы, протекающие в ядре звезды, несут в себе зародыши её грядущего разрушения. Когда дерево или уголь сгорают в камине, выделяется тепло, а в качестве продуктов отхода образуются дым и зола. В "камине" звёздного ядра водород - это уголь, а гелий - зола. Если из камина время от времени не удалять золу, то она может забить его и огонь потухнет.

Если в ядре звезды вещество не перемешивается, в термоядерных реакциях начинают принимать участие слои, непосредственно примыкающие к гелиевому ядру, что обеспечивает звезду энергией. Однако со временем запасы водорода в этих слоях иссякают, и ядро разрастается всё больше и больше. Наконец достигается состояние, когда в ядре совсем не остаётся водорода. Обычные реакции превращения водорода в гелий прекращаются; звезда покидает главную последовательность и вступает в сравнительно короткий (но интересный) отрезок своего жизненного пути, отмеченный необычайно бурными реакциями.

Когда водорода становится мало, и он больше не может участвовать в реакциях, источник энергии иссякает. Но, как мы уже знаем, звезда представляет собой тонко сбалансированный механизм, в котором давление, раздувающее звезду изнутри, полностью уравновешено гравитационным притяжением. Следовательно, когда генерация энергии ослабевает, давление излучения резко падает и силы тяготения начинают сжимать звезду. Снова происходит падение вещества к её центру, во многом напоминающее то, с которого началось рождение протозвезды. Энергия, возникающая при гравитационном сжатии, намного больше энергии, выделяемой теперь в ядерных реакциях, а раз так, то звезда начинает быстро сжиматься. В результате верхние слои звезды нагреваются, она снова расширяется и растёт в размерах до тех пор, пока внешние слои не станут достаточно разреженными, лучше пропускающими излучение звезды. Полагают, что звезда типа Солнца может увеличиться настолько, что заполнит орбиту Меркурия. После того как звезда начинает расширяться, она покидает главную последовательность и, как мы уже видели, дни её теперь сочтены. С этого момента жизнь звезды начинает клониться к закату.

Когда звезда сжимается, за счёт работы сил тяготения выделяется огромная энергия, которая раздувает звезду. Казалось бы, это должно привести к падению температуры в ядре. Но это не так. Против ожидания температура в ядре звезды резко возрастает. В относительно тонком слое вокруг ядра всё ещё происходит обычное ядерное выгорание водорода, что приводит к увеличению содержания гелия в ядре. Когда в ядре концентрируется около половины массы звезды, последняя расширяется до своего максимального размера и её цвет из белого становится жёлтым, а затем красным, так как температура поверхности звезды уменьшается. Теперь звезда вступает в новую фазу. Температура ядра растёт до тех пор, пока не превысит 200 млн. К. При такой температуре начинает выгорать гелий, в ре-

зультате чего образуется углерод. Три ядра гелия, сливаясь, превращаются в ядро углерода, который оказывается более лёгким, чем три исходных ядра гелия, поэтому такая реакция также идёт с выделением энергии. Снова давление радиации, которое играло столь важную роль, когда звезда находилась на главной последовательности, начинает противодействовать тяготению, и ядро звезды опять удерживается от дальнейшего сжатия. Звезда возвращается к обычным размерам, по мере того как это происходит, температура её поверхности растёт, и она из красной становится белой.

В этот момент по некоторым загадочным причинам звезда оказывается неустойчивой. Астрономы полагают, что переменные звёзды, то есть звёзды, периодически меняющие свою светимость, возникают на этой стадии звёздной эволюции, так как процесс сжатия происходит не гладко и на некоторых его этапах возникают ритмические колебания звезды. На этой стадии звезда может пройти через фазу новой, в течение которой она внезапно выбрасывает в межзвёздное пространство значительное количество вещества; оно, принимая вид расширяющейся оболочки, может содержать значительную часть массы звезды. Вспышки некоторых новых многократно повторяются, и это означает, что одной вспышки недостаточно, чтобы звезда достигла устойчивости. Но со временем она приобретает устойчивость, колебания исчезают, звезда начинает свой длинный путь к звёздному кладбищу. Даже на этой стадии звезда ещё способна к активности. Она может стать сверхновой. Причина, по которой звезда оказывается способной на такую активность, обусловлена количеством вещества, оставшимся у неё к этой стадии.<




<== предыдущая лекция | следующая лекция ==>
ГЛАВА II ЗАРОЖДЕНИЕ КОСМОЛОГИЧЕСКИХ ИДЕЙ | ГЛАВА IV СИСТЕМА БИОЛОГИЧЕСКИХ НАУК

Дата добавления: 2015-10-15; просмотров: 545. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Studopedia.info - Студопедия - 2014-2024 год . (0.016 сек.) русская версия | украинская версия