Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПОСТМОДЕРНИЗМ И ПОСТНЕКЛАССИЧЕСКАЯ НАУКА.


Наш анализ оказался бы неполным без выявления точек соприкосновения постмодернизма и науки. Это позволит не только более глубоко понять специфику и новизну этого мировидения, но и более реально оценить его место и роль в той духовной трансформации, которую переживает современный мир.

С 70-х годов ХХ века неклассическая наука, сложившаяся на рубеже Х1Х-ХХ веков, сменяется постнеклассической наукой. Рождается новый тип знания, принципиально отличный от того, который принято называть классической наукой, или наукой Нового времени. Он характеризуется повышением субъективности, гуманистичности, самокритичности, пересмотром таких его классических характеристик, как объективность и истинность.

В классическом типе научности критерии научного познания таковы, что внимание исследователя сосредотачивается на характеристике объекта при элиминации всего того, что связано с субъектом. Неклассическая рациональность учитывает соотнесенность характеристик объекта и средств познания, используемых субъектом. Постнеклассический тип соотносит знания об объекте не только со средствами, но и с целевыми установками познающего субъекта.

Постнеклассическая наука исследует не только сложные, сложно организованные системы, но и сверхсложные системы, открытые и способные к самоорганизации. Объектом науки становятся и "человекоразмерные" комплексы, неотъемлемым компонентом которых является человек (глобально-экологические, биотехнологические, медико-биологические и т.п.) Внимание науки переключается с явлений повторяемых и регулярных на "отклонения" всех видов, на явления побочные и неупорядоченные, изучение которых приводит к исключительно важным выводам. На смену таким постулатам классической науки, как простота, устойчивость, детерминированность, выдвигаются постулаты сложности, вероятности, неустойчивости. В результате изучения различных сложно организованных систем, способных к самоорганизации (от физики и биологии до экономики и социологии), складывается новое – нелинейное – мышление, новая "картина мира". Ее основные характеристики – неравновесность, неустойчивость, необратимость. Вместе с понятиями флуктуации, бифуркации и когерентности они образуют, по сути, новую базовую модель мира и познания, дают науке новый язык.

Утверждение всего комплекса идей нелинейности, вероятности, хаоса и т.п. происходит в 70-е-80-е годы одновременно в самых различных областях как естественнонаучного, так и социо-гуманитарного знания. Это связано с развитием междисциплинарных исследований образования упорядоченных структур, теории самоорганизации (синергетика Германа Хакена (Германия), теория диссипативных структур Ильи Пригожина (Бельгия) и теория катастроф Тома Рене (Франция). Предмет теории самоорганизации (синергетики)– сложные системы в условиях неустойчивого равновесия и их самоорганизация вблизи точек бифуркации, где малое воздействие оказывается значительным и непредсказуемым по своим последствиям для поведения системы в целом. Объект – не существующее, а возникающее.

Согласно синергетике, в мире нет тех универсальных законов, которые делали возможным его познание в классическом смысле. А это означает деонтологизацию знания, усиление роли субъекта в процессе познания, которое как раз и может быть интерпретировано как отрицание реальности объекта. Усложняется вопрос о критериях реальности, демаркации между реальным и вымышленным. Встает вопрос о полионтологичности бытия. Синергетика осуществляет радикальную переоценку ценностей. Она претендует на пересмотр онтологии мира, сложившейся линейной модели прогресса, кумулятивной модели знания.

Проблема корреляции постмодернизма и современной науки была поставлена Ж.-Ф.Лиотаром (Lyotard J.- F. 1979). Сегодня совершенно очевидно существование параллелей между постнеклассической наукой с ее неопределенностью, неполнотой, неверифицируемостью и принципиальными методологическими установками постмодернизма. "Модерный" мир, в том числе и социальный, организовывали категории детерминизма, универсальности, определенности и направленности развития. Постмодернистская социальная теория использует категории неопределенности, нелинейности, многовариантности. В ней происходит примирение с сущностно плюралистической природой мира и ее неизбежным следствием – амбивалентностью и случайностью человеческого существования.

Синергетика дает своего рода "естественнонаучную" легитимацию идеям постмодернизма. Их резонанс способствует утверждению нового мировоззрения, новой методологии познания, ускоряя распад классических стадиально-линейных моделей истории, выработке новых подходов к ней как принципиально открытому, вариабельному, альтернативному процессу, необходимо предполагающему "выбор"


 

Постнеклассическая наука формируется в 70-х годах XX в. Этому способствуют революция в хранении и получении знаний (компьютеризация науки), невозможность решить ряд научных задач без комплексного использования знаний различных научных дисциплин, без учета места и роли человека в исследуемых системах. Так, в это время развиваются генные технологии, основанные на методах молекулярной биологии и генетики, которые направлены на конструирование новых, ранее в природе не существовавших генов. На их основе, уже на первых этапах исследования, были получены искусственным путем инсулин, интерферон (защитный белок) и т.д. Основная цель генных технологий - видоизменение ДНК. Работа в этом направлении привела к разработке методов анализа генов и геномов (совокупность генов, содержащихся в одинарном наборе хромосом), а также их синтеза, т.е. конструирование новых генетически модифицированных организмов. Разработан принципиально новый метод, приведший к бурному развитию микробиологии - клонирование.
Внесение эволюционных идей в область химических исследований привело к формированию нового научного направления - эволюционной химии. Так, на основе ее открытий, в частности разработки концепции саморазвития открытых каталитических систем, стало возможным объяснение самопроизвольного (без вмешательства человека) восхожде ния от низших химических систем к высшим.
Наметилось еще большее усиление математизации естествознания, что повлекло увеличение уровня его абстрактности и сложности. Так, например, развитие абстрактных методов в исследованиях физической реальности приводит к созданию, с одной стороны, высокоэффективных теорий, таких как электрослабая теория Салама-Вайнберга, квантовая хромодинамика, "теория Великого Объединения", суперсимметричные теории, а с другой - к так называемому "кризису" физики элементарных частиц. Так, американский физик М. Гутцвиллер в 1994 г. писал: "Несмотря на все обещания, физика элементарных частиц превратилась в кошмар, несмотря на ряд глубоких интуитивных прозрений, которые мы эксплуатировали некоторое время. Неабелевы поля известны 40 лет, кварки наблюдались 25 лет назад, а гармоний открыт 20 лет назад. Но все чудесные идеи привели к моделям, которые зависят от 16 открытых параметров... Мы даже не можем установить прямые соответствия с массами элементарных частиц, поскольку необходимая для этого математика слишком сложна даже для современных компьютеров... Но даже когда я пытаюсь читать некоторые современные научные статьи или слушаю доклады некоторых своих коллег, меня не оставляет следующий вопрос: имеют ли они контакт с реальностью? Разрешите мне в качестве примера привести антиферромагнетизм, который снова популярен после открытия сверхпроводящих медных окислов Сверхизощренные модели антиферромагнетизма были предложены и разработаны чрезвычайно тщательно людьми, которые ни разу не слышали, да и слышать не хотят, о гематите (красный железняк-минерал подкласса простых окислов), или о том, что, как каждый знает, называется ржавым гвоздем".
Развитие вычислительной техники связано с созданием микропроцессоров, которые были положены также в основание создания станков с программным управлением, промышленных роботов, для создания автоматизированных рабочих мест, автоматических систем управления.
Прогресс в 80 - 90-х гг. XX в. развития вычислительной техники был вызван созданием искусственных нейронных сетей, на основе которых разрабатываются и создаются нейрокомпьютеры, обладающие возможностью самообучения в ходе решения наиболее сложных задач. Большой шаг вперед сделан в области решения качественных задач. Так, на основе теории нечетких множеств создаются нечеткие компьютеры, способные решать подобного рода задачи. А внесение человеческого фактора в создание баз данных привело к появлению высокоэффективных экспертных систем, которые составили основу систем искусственного интеллекта.

Поскольку объектом исследования все чаще становятся системы, экспериментирование с которыми невозможно, то важнейшим инструментом научно-исследовательской деятельности выступает математическое моделирование. Его суть в том, что исходный объект изучения заменяется его математической моделью, экспериментирование с которой возможно при помощи программ, разработанных для ЭВМ. В математическом моделировании видятся большие эвристические возможности, так как "математика, точнее математическое моделирование нелинейных систем, начинает нащупывать извне тот класс объектов, для которых существуют мостики между мертвой и живой природой, между самодостраиванием нелинейно эволюционирующих структур и высшими проявлениями творческой интуиции человека"
На базе фундаментальных знаний быстро развиваются сформированные в недрах физики микроэлектроника и наноэлектроника. Электроника - наука о взаимодействии электронов с электромагнитными полями и о методах создания электронных приборов и устройств, используемых для передачи информации. И если в начале XX в. на ее основе было возможно создание электронных ламп, то с 50-х гг. развивается твердотельная электроника (прежде всего полупроводниковая), а с 60-х гг. - микроэлектроника на основе интегральных схем. Развитие последней идет в направлении уменьшения размеров, содержащихся в интегральной схеме элементов до миллиардной доли метра - нанометра (нм), с целью применения при создании космических аппаратов и компьютерной техники.
Еще раз повторим, что все чаще объектами исследования становятся сложные, уникальные, исторически развивающиеся системы, которые характеризуются открытостью и саморазвитием. Среди них такие природные комплексы, в которые включен и сам человек - так называемые "человекоразмерные комплексы"; медико-биологические, экологические, биотехнологические объекты, системы "человек-машина", которые включают в себя информационные системы и системы искусственного интеллекта и т.д. С такими системами осложнено, а иногда и вообще невозможно экспериментирование. Изучение их немыслимо без определения границ возможного вмешательства человека в объект, что связано с решением ряда этических проблем.

Поэтому не случайно на этапе постнеклассической науки преобладающей становится идея синтеза научных знаний - стремление построить общенаучную картину мира на основе принципа универсального эволюционизма, объединяющего в единое целое идеи системного и эволюционного подходов. Концепция универсального эволюционизма базируется на определенной совокупности знаний, полученных в рамках конкретных научных дисциплин (биологии, геологии и т.д.) и вместе с тем включает в свой состав ряд философско-мировоззренческих установок. Часто универсальный, или глобальный, эволюционизм понимают как принцип, обеспечивающий экстраполяцию эволюционных идей на все сферы действительности и рассмотрение неживой, живой и социальной материи как единого универсального эволюционного процесса.
Системный подход внес новое содержание в концепцию эволюционизма, создав возможность рассмотрения систем как самоорганизующихся, носящих открытый характер. Как отмечал академик Никита Николаевич Моисеев, все происходящее в мире можно представить как отбор и существуют два типа механизмов, регулирующих его:
1) адаптационные, под действием которых система не приобретает принципиально новых свойств;
2) бифуркационные, связанные с радикальной перестройкой системы.
Моисеев предложил принцип экономии энтропии, дающий "преимущества" сложным системам перед простыми. Эволюция может быть представлена как переход от одного типа самоорганизующейся системы к другой, более сложной. Идея принципа универсального эволюционизма основана на трех важнейших концептуальных направлениях в науке конца XX в.:

1) теории нестационарной Вселенной;
2) синергетике;
3) теории биологической эволюции и развитой на ее основе концепции биосферы и ноосферы.

Модель расширяющейся Вселенной, существенно изменила представления о мире, включив в научную картину мира идею космической эволюции. Теория расширяющейся Вселенной испытала трудности при попытке объяснить этапы космической эволюции от первовзрыва до мировой секунды после него. Ответы на эти вопросы даны в теории раздувающейся Вселенной, возникшей на стыке космологии и физики элементарных частиц.
В основу теории положена идея "инфляционной фазы" - стадии ускоренного расширения. После колоссального расширения в течение невероятно малого отрезка времени установилась фаза с нарушенной симметрией, что привело к изменению состояния вакуума и рождению огромного числа частиц. Несимметричность Вселенной выражается в преобладании вещества над антивеществом и обосновывается "великим объединением" теории элементарных частиц с моделью раздувающейся Вселенной. На этой основе удалось описать слабые, сильные и электромагнитные взаимодействия при высоких энергиях, а также достичь прогресса в теории сверхплотного вещества. Согласно последней, возникла возможность обнаружить факт, состоящий в том, что при изменении температуры в сверхплотном веществе происходит ряд фазовых переходов, во время которых меняются свойства вещества и свойства элементарных частиц, составляющих это вещество. Подобного рода фазовые переходы должны были происходить при охлаждении расширяющейся Вселенной вскоре после "Большого взрыва". Таким образом, устанавливается взаимосвязь между эволюцией Вселенной и процессом образования элементарных частиц, что дает возможность утверждать - Вселенная может представлять уникальную основу для проверки современных теорий элементарных частиц и их взаимодействий.
Следствием теории раздувающейся Вселенной является положение о существовании множества эволюционно развивающихся вселенных, среди которых, возможно, только наша оказалась способной породить такое многообразие форм организации материи. А возникновение жизни на Земле обосновывается на основе антропного принципа, устанавливающего связь существования человека (как наблюдателя) с физическими параметрами Вселенной и Солнечной системы, а также с универсальными константами взаимодействия и массами элементарных частиц. Данные космологии, полученные в последнее время, дают возможность предположить, что потенциальные возможности возникновения жизни и человеческого разума были заложены уже в начальных стадиях развития Метагалактики, когда формировались численные значения мировых констант, определившие характер дальнейших эволюционных изменений.
Вторым концептуальным положением, лежащим в основе принципа универсального эволюционизма, явилась теория самоорганизации – синергетика. Ее характеризуют, используя следующие ключевые слова: самоорганизация, стихийно-спонтанный структурогенез, нелинейность, открытые системы. Синергетика изучает открытые, т.е. обменивающиеся с внешним миром, веществом, энергией и информацией системы. В синергетической картине мира царит становление, обремененное многовариантностью и необратимостью. Бытие и становление объединяются в одно понятийное гнездо. Время создает или, иначе выражаясь, выполняет конструктивную функцию.
Нелинейность предполагает отказ от ориентаций на однозначность и унифицированность, признание методологии разветвляющегося поиска и вариативного знания.
Понятие синергетики получило широкое распространение в современных научных дискуссиях и исследованиях последних десятилетий в области философии науки и методологии. Сам термин имеет древнегреческое происхождение и означает содействие, соучастие или содействующий, помогающий. Следы его употребления можно найти еще в исихазме - мистическом течении Византии. Наиболее часто он употребляется в контексте научных исследований в значении: согласованное действие, непрерывное сотрудничество, совместное использование.

1973 г. - год выступления немецкого ученого Германа Хакена (род.1927) на первой конференции, посвященной проблемам самоорганизации, положил начало новой дисциплине и считается годом рождения синергетики. Хакен обратил внимание на то, что корпоративные явления наблюдаются в самых разнообразных системах, будь то астрофизические явления, фазовые переходы, гидродинамические неустойчивости, образование циклонов в атмосфере и т.д. В своей классической работе "Синергетика" он отмечал, что во многих дисциплинах, от астрофизики до социологии, мы часто наблюдаем, как кооперация отдельных частей системы приводит к макроскопическим структурам или функциям. Синергетика в ее нынешнем состоянии фокусирует внимание на таких ситуациях, в которых структуры или функции систем переживают драматические изменения на уровне макромасштабов. В частности, ее особо интересует вопрос о том, как именно подсистемы или части производят изменения, всецело обусловленные процессами самоорганизации. Парадоксальным казалось то, что при переходе от неупорядоченного состояния к состоянию порядка все эти системы ведут себя схожим образом.
Хакен объясняет, почему он назвал новую дисциплину синергетикой следующим образом. Во-первых, в ней "исследуется совместное действие многих подсистем... в результате которого на макроскопическом уровне возникает структура и соответствующее функционирование". Во-вторых, она кооперирует усилия различных научных дисциплин для нахождения общих принципов самоорганизации систем. Г. Хакен подчеркнул, что в связи с кризисом узкоспециализированных областей знания информацию необходимо сжать до небольшого числа законов, концепций или идей, а синергетику можно рассматривать как одну из подобных попыток. По мнению ученого, существуют одни и те же принципы самоорганизации различных по своей природе систем, от электронов до людей, а значит, речь должна вестись об общих детерминантах природных и социальных процессов, на нахождение которых и направлена синергетика.
Неоценим вклад в развитие этой науки Ильи Романовича Пригожина (1917-2003) – русско-бельгийского (из семьи русских эмигрантов) ученого, лауреата Нобелевской премии (отметим, что Пригожин как правило термин «синергетика» не использовал). Пригожин на основе своих открытий в области неравновесной термодинамики показал, что в неравновесных открытых системах возможны эффекты, приводящие не к возрастанию энтропии и стремлению термодинамических систем к состоянию равновесного хаоса, а к "самопроизвольному" возникновению упорядоченных структур, к рождению порядка из хаоса. Синергетика изучает когерентное, согласованное состояние процессов самоорганизации в сложных системах различной природы. Для того, чтобы было возможно применение синергетики, изучаемая система должна быть открытой и нелинейной (нелинейность выражается в том, что одни и те же изменения вызывают разные изменения – допустим если взять наше самчувствие, то изменение температуры от 18 до 23 градусов в аудитории, скажется не столь значительно как, допустим изменение от 30 градусов до 35). Система также должна состоять из множества элементов и подсистем (электронов, атомов, молекул, клеток, нейронов, органов, сложных организмов, социальных групп и т.д.), взаимодействие между которыми может быть подвержено лишь малым флуктуациям, незначительным случайным изменениям, и находиться в состоянии нестабильности, т.е. - в неравновесном состоянии.

Синергетика использует математические модели для описания нелинейных процессов самоорганизации. Синергетика устанавливает, какие процессы самоорганизации происходят в природе и обществе, какого типа нелинейные законы управляют этими процессами и при каких условиях, выясняет, на каких стадиях эволюции хаос может играть позитивную роль, а когда он нежелателен и деструктивен.

Однако применение синергетики в исследовании социальных процессов ограничено в некоторых отношениях:
1. Удовлетворительно поняты, с точки зрения синергетики, могут быть только массовые процессы. Поведение личности, мотивы ее деятельности, предпочтения едва ли могут быть объяснены с ее помощью, так как она имеет дело с макросоциальными процессами и общими тенденциями развития общества. Она дает картину макроскопических, социоэкономических событий, где суммированы личностные решения и акты выбора индивидов. Индивид же, как таковой, синергетикой не изучается.

2. Синергетика не учитывает роль сознательного фактора духовной сферы, так как не рассматривает возможность человека прямо и сознательно противодействовать макротенденциям самоорганизации, которые присущи социальным сообществам.

3. При переходе на более высокие уровни организации возрастает количество факторов, которые участвуют в детерминации изучаемого социального события, в то время как синергетика применима к исследованию таких процессов, которые детерминированы небольшим количеством фактов.


Robert Burns




<== предыдущая лекция | следующая лекция ==>
Библиографический список. 1. Агекян Т.А. Звезды, галактики, Метагалактика | ПРАЙС-ЛИСТ. May God bless and keep you always,

Дата добавления: 2015-10-15; просмотров: 1661. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия