Студопедия — Расчет загрязнения атмосферы выбросами одиночного источника
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расчет загрязнения атмосферы выбросами одиночного источника






 

 

Рис. 2. Распределение приземной концентрации загрязняющего вещества в атмосфере на оси факела выброса точечного источника

 

Максимальное значение приземной концентрации вредного вещества См (мг/м3) при выбросе нагретой смеси ЗВ с воздухом из одиночного точечного источника (труба с круглым устьем) при неблагоприятных метеорологических условиях (штиль, слабая скорость ветра, неустойчивая стратификация атмосферы, инверсия) на расстоянии xм (м) от источника определяется по формуле:

(1)

где А - коэффициент, зависящий от температурной стратификации атмосферы, соответствующий неблагоприятным метеорологическим условиям, при которых концентрация вредных веществ в атмосферном воздухе максимальна (табл. 1);

М - масса вредного вещества, выбрасываемого в атмосферу в единицу времени (табл. 2), г/с;

F - безразмерный коэффициент, учитывающий скорость оседания вредных веществ в атмосферном воздухе;

m и n - коэффициенты. Учитывающие условия выхода газовоздушной смеси из устья источника выброса;

H (м) - высота источника выброса над уровнем земли;

h - безразмерный коэффициент, учитывающий влияние рельефа местности, в случае ровной или слабопересеченной местности с перепадом высот, не превышающим 50 м на 1 км, h = 1 (табл.1);

DТ - разность между температурой выбрасываемой газовоздушной смеси Тг и температурой окружающего атмосферного воздуха Тв, °С. Значение температуры окружающего атмосферного воздуха Тв и температуры выбрасываемой в атмосферу газовоздушной смеси Тг для выполнения расчета принимают по табл. 1.;

V1 - расход газовоздушной смеси, м3/с, определяемый по формуле:

(2)

где D - диаметр устья источника выброса, м;

w0 -средняя скорость выхода газовоздушной смеси из устья источника выброса, м/с.

Значение безразмерного коэффициента F принимаем:

а) для газообразных вредных веществ и мелкодисперсных аэрозолей (пыли, золы и т. п., скорость упорядоченного оседания которых практически равна нулю) - 1;

б) для мелкодисперсных аэрозолей (кроме указанных в п. 5а) при среднем эксплуатационном коэффициенте очистки выбросов не менее 90 % - 2; от 75 до 90 % - 2,5; менее 75 % и при отсутствии очистки - 3.

 

Значения коэффициентов m и n определяем в зависимости от параметров f, vм, и fe.

(3)

(4)

(5)

(6)

Коэффициент n определяем в зависимости от f по формулам:

(7)

(8)

Если fе < f < 100, то значение коэффициента т вычисляем при f = fe.

Коэффициент n при f < 100 определяем в зависимости от vм по формулам

n = 1 при vм ³ 2; (9)

(10)

n = 4,4 vм при vм < 0,5. (11)

Расстояние xм (м) от источника выбросов, на котором приземная концентрация с (мг/м3) при неблагоприятных метеорологических условиях достигает максимального значения см, определяется по формуле

(12)

где безразмерный коэффициент d при f < 100 находится по формулам:

(13)

(14)

(15)

При f > 100 или DT» 0 значение d находится по формулам:

(16)

(17)

(18)

Значение опасной скорости uм (м/с) на уровне флюгера (обычно 10 м от уровня земли), при которой достигается наибольшее значение приземной концентрации вредных веществ см, в случае f < 100 определяется по формулам:

(19)

(20)

(21)

При f >100 или DT» 0 значение uм вычисляем по формулам:

(22)

(23)

(24)

Максимальное значение приземной концентрации вредного вещества сми (мг/м3) при неблагоприятных метеорологических условиях и скорости ветра u (м/с), отличающейся от опасной скорости ветра uм (м/с), определяем по формуле

сми = r cм, (25)

где r - безразмерная величина, определяемая в зависимости от отношения u / uм по формулам:

(26)

(27)

Расстояние от источника выброса xми (м), на котором при скорости ветра u и неблагоприятных метеорологических условиях приземная концентрация вредных веществ достигает максимального значения сми (мг/м3), определяем по формуле:

хми = p xм, (28)

где р - безразмерный коэффициент, определяемый в зависимости от отношения u / uм по формулам:

(29)

(30)

(31)

При опасной скорости ветра uм приземная концентрация вредных веществ с (мг/м3) в атмосфере по оси факела выброса на различных расстояниях х (м) от источника выброса (см. рис. 2) определяем по формуле

с = s 1 cм, (32)

где s 1 - безразмерный коэффициент, определяемый в зависимости от отношения x / xм и коэффициента F по формулам:

(33)

(34)

(35)

(36)

 

Максимальная концентрация cмx (мг/м3), достигающаяся на расстоянии x от источника выброса из оси факела при скорости ветра uмx, определяем по формуле

(37)

где безразмерный коэффициент находится в зависимости от отношения х / хм по формулам:

(39)

(40)

(41)

(42)

(43)

(44)

(45)

Расчеты концентраций загрязняющих веществ в приземном слое атмосферы, выполненные по формулам (32) и (37) необходимо представить в таблице (см. ниже).

 

Скорость ветра uмx при этом рассчитываем по формуле

uмx = f 1 uм, (46)

где безразмерный коэффициент f 1 определяем в зависимости от отношения x / xм по формулам:

f 1 = 1 при x / xм £ 1; (47)

(48)

f 1 = 0,25 при 8 < x / xм < 80; (49)

f 1 = 1,0 при x / xм ³ 80. (50)

Для каждого источника радиус зоны влияния рассчитывается как наибольшее из двух расстояний от источника х 1 и х 2, где х 1 = 10 xм, а величина х 2 определяется как расстояние от источника, начиная с которого с £ ПДКcc.

Делаем вывод о величине максимальной приземной концентрации и сравниваем с предельно-допустимой концентрацией и возможные последствия для населения проживающего в зоне загрязнения.

 







Дата добавления: 2015-10-15; просмотров: 1216. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия