ВЕЛИКИЙ УСТЮГ 2 страница
Содержание [убрать] · 1 Введение · 2 История открытия · 3 Получение · 4 Дефекты · 5 Возможные применения · 6 Физика o 6.1 Теория § 6.1.1 Кристаллическая структура § 6.1.2 Зонная структура § 6.1.3 Линейный закон дисперсии § 6.1.4 Эффективная масса § 6.1.5 Хиральность и парадокс Клейна § 6.1.6 Эффект Казимира § 6.1.7 Проводимость § 6.1.8 Квантовый эффект Холла · 7 Двухслойный графен · 8 Интересные факты · 9 См. также · 10 Примечания · 11 Литература · 12 Ссылки o 12.1 Лаборатории o 12.2 Компании Введение[править | править вики-текст] Графен — первый известный истинно двумерный кристалл[1]. В отличие от более ранних попыток создания двумерных проводящих слоёв, к примеру, двумерный электронный газ (ДЭГ), из полупроводников методом управления шириной запрещённой зоны, электроны в графене локализованы в плоскости гораздо сильнее. Многообразие химических и физических свойств обусловлено кристаллической структурой и π-электронами атомов углерода, составляющих графен. Широкое изучение материала в университетах и исследовательских лабораториях связано, прежде всего, с доступностью и простотой его приготовления с использованием механического расщепления кристаллов графита[1]. Материалом, проявившим свои уникальные свойства: высокую проводимость итеплопроводность, прочность[15], заинтересовались не только учёные, но и технологи, а также связанные с производством процессоров корпорацииIBM[16], Samsung[17]. Принцип работы транзисторов из графена существенно отличается от принципа работы традиционных полевых кремниевых транзисторов, так как графен имеет запрещённую зону нулевой ширины, и ток в графеновом канале течёт при любом приложенном затворномнапряжении, поэтому развиваются иные подходы к созданию транзисторов[18]. Качество графена для транспортных измерений характеризуется таким параметром, как подвижность, который характеризует силу отклика носителей тока на приложенное электрическое поле. Двумерный электронный газ в полупроводниковых гетероструктурах обладает рекордными подвижностями при температурах ниже 1 K. Графен уступает ДЭГ в GaAs при столь низких температурах, но, так как электрон-фононное рассеяние в графене намного слабее, подвижность достигает 250 000 см2В−1с−1 при комнатной температуре[1]. Эта подвижность представляет собой один из основных параметров, необходимых для создания быстродействующих высокочастотных транзисторов[18]. Уникальные электронные свойства графена проявляются и в оптике. В частности, графен позволяет глазом «увидеть» постоянную тонкой структуры α, сравнивая интенсивность света, прошедшего через закрытую графеном апертуру и прошедшего свободно. Коэффициент прохождения для графена в области видимого света хорошо описывается простой формулой T ≈ 1−πα ≈ 97,7 %[19]. Постоянная тонкой структуры оказывается связана с величинойкванта сопротивления, измеряемого в Квантовом эффекте Холла. В этом случае точность её настолько высока, что позволяет использовать графен для создания эталона сопротивления, R K = h/e2 = 25 812,807557(18) Ом[20]. Связь между графеном и постоянной тонкой структуры оказывается даже глубже, поскольку динамика электронного газа в графене определяется релятивистским уравнением квантовой механики — уравнением Дирака, — и по существу является твердотельным аналогом (2+1)-мерной квантовой электродинамики. Несколько аналогичных эффектов, предсказанных для квантовой электродинамики можно наблюдать в графене[21]. Несмотря на сильное взаимодействие света с графеном[22], отыскать осаждённые плёнки графена на подложке кремния оказывается трудной задачей. Существуют предпочтительные толщины оксида кремния (90 нм, 290 нм для длин волн видимого света), которые дают максимальный контраст, что существенно упрощает поиск плёнок[23]. Хотя тренированный человек достаточно легко отличает монослой графена от двухслойного графена по контрасту, хорошим доказательством служит также рамановская спектроскопия[24], выгодно отличающаяся быстротой анализа и чувствительностью к количеству слоёв. Альтернативные методы, такие как определение толщины атомно-силовым микроскопом и идентификация по квантовому эффекту Холла требуют гораздо большего времени[23]. Методы роста графена на больших площадях отличаются от механических методов однородностью и чистотой процесса. Газофазная эпитаксия углерода на медную фольгу (CVD-графен) позволяет создавать очень однородные поликристаллические плёнки графена с размерами порядка метров[25]. Размер монокристаллов графена составляет сотни микрон. Меньшие кристаллиты получаются при термическом разложении карбида кремния. Самый непроизводительный метод механического расщепления оказывается наиболее приспособленным для получения высококачественных кристаллов графена, хотя CVD-графен по качеству приближается к нему. Как механический метод, так и выращивание на поверхности другого материала обладают существенными недостатками, в частности, малой производительностью, поэтому технологи изобретают химические методы получения графена из графита для получения из монокристалла графита плёнки, состоящей преимущественно из графеновых слоёв, что существенно продвинет графен на рынке. Благодаря сильным углеродным ковалентным связям графен инертен по отношению к кислотам и щелочам при комнатной температуре. Однако присутствие определённых химических соединений в атмосфере может приводить к легированию графена, что нашло применение в обладающих рекордной чувствительностью сенсорах — детекторах отдельных молекул. Для химической модификации с образованием ковалентных связей графена необходимы повышенные температуры и обладающие сильной реакционной способностью вещества. Например, для создания гидрогенизированного графена нужно наличие протонов в плазме газового разряда, для создания фторографена — сильного фторирующего агента дифторида ксенона. Оба этих материала показали диэлектрические свойства, то есть их сопротивление растёт с понижением температуры. Это обусловлено формированием запрещённой зоны. История открытия[править | править вики-текст] Основная статья: История графена Рис. 1. Идеальная кристаллическая структура графена представляет собой гексагональную кристаллическую решётку.
Графен является двумерным кристаллом, состоящим из одиночного слоя атомов углерода, собранных в гексагональную решётку. Его теоретическое исследование началось задолго до получения реальных образцов материала, поскольку из графена можно собрать трёхмерный кристалл графита. Графен является базой для построения теории этого кристалла. Графит является полуметаллом, и, как было показано[26] в1947 году П. Воллесом, в зонной структуре графена также отсутствует запрещённая зона, причём в точках соприкосновения валентной зоны и зоны проводимостиэнергетический спектр электронов и дырок линеен как функция волнового вектора. Такого рода спектром обладают безмассовые фотоны и ультрарелятивистские частицы, а также нейтрино. Поэтому говорят, что эффективная масса электронов и дырок в графене вблизи точки соприкосновения зон равна нулю. Но здесь стоит заметить, что, несмотря на сходство фотонов и безмассовых носителей, у графена есть несколько существенных отличий, делающих носители в нём уникальными по своей физической природе, а именно: электроны и дырки являются фермионами, и они заряжены. В настоящее время аналогов для этих безмассовых заряженных фермионов среди известных элементарных частиц нет. Несмотря на такие специфические особенности, до 2005 года[11] экспериментального подтверждения эти выводы не получили, поскольку не удавалось получить графен. Кроме того, ещё раньше было теоретически доказано, что свободную идеальную двумерную плёнку получить невозможно из-за нестабильности относительно сворачивания или скручивания[27][28][29]. Тепловые флуктуации приводят к плавлению двумерного кристалла при любой конечной температуре. Интерес к графену появился снова после открытия углеродных нанотрубок, поскольку вся первоначальная теория графена строилась на простой модели развёртки цилиндра нанотрубки. Поэтому теория для графена в приложении к нанотрубкам хорошо проработана. Попытки получения графена, прикреплённого к другому материалу, начались с экспериментов, использующих простой карандаш, и продолжились с использованием атомно-силового микроскопа[30] для механического удаления слоёв графита, но не достигли успеха. Использование графита с внедрёнными (интеркалированный графит — соединения, подобные графитиду калия KC8)[27] в межплоскостное пространство чужеродными атомами (используется для увеличения расстояния между соседними слоями и их расщепления) тоже не привело к результату. В 2004 году российскими и британскими учёными была опубликована работа в журнале Science[7], где сообщалось о получении графена на подложке окислённого кремния. Таким образом, стабилизация двумерной плёнки достигалась благодаря наличию связи с тонким слоем диэлектрика SiO2 по аналогии с тонкими плёнками, выращенными с помощью МПЭ. Впервые были измерены проводимость, эффект Шубникова — де Гааза, эффект Холла для образцов, состоящих из плёнок углерода атомарной толщины. Метод отшелушивания является довольно простым и гибким, поскольку позволяет работать со всеми слоистыми кристаллами, то есть теми материалами, которые представляются как слабосвязанные (по сравнению с силами в плоскости) слои двумерных кристаллов. В последующей работе[8]авторы показали, что его можно использовать для получения других двумерных кристаллов: BN, MoS2, NbSe2, Bi2Sr2CaCu2Ox. В 2011 году ученые из Национальной радиоастрономической обсерватории объявили, что им, вероятно, удалось зарегистрировать графен в космическом пространстве (планетарные туманности в Магеллановых облаках)[31]. Получение[править | править вики-текст] Основная статья: Получение графена Рис. 2. Слои интеркалированного графита можно легко отделить друг от друга[27] Кусочки графена получают при механическом воздействии на высокоориентированный пиролитический графит иликиш-графит[32]. Сначала плоские куски графита помещают между липкими лентами (скотч) и расщепляют раз за разом, создавая достаточно тонкие слои (среди множества полученных плёнок могут попадаться одно- и двуслойные, которые и представляют интерес). После отшелушивания скотч с тонкими плёнками графита прижимают к подложке окислённого кремния. При этом трудно получить плёнку определённого размера и формы в фиксированных частях подложки (горизонтальные размеры плёнок составляют обычно около 10 мкм)[8]. Найденные с помощью оптического микроскопа слабо различимые (при толщине диэлектрика 300 нм) плёнки подготавливают для измерений. Толщину можно определить с помощью атомно-силового микроскопа (она может варьироваться в пределах 1 нм для графена) или используя комбинационное рассеяние. Используя стандартную электронную литографию и реактивное плазменное травление, задают форму плёнки для электрофизических измерений. Кусочки графена также можно приготовить из графита, используя химические методы[33]. Сначала микрокристаллы графита подвергаются действию смеси серной и азотной кислот. Графит окисляется, и на краях образца появляютсякарбоксильные группы графена. Их превращают в хлориды при помощи тионилхлорида. Затем под действиемоктадециламина в растворах тетрагидрофурана, тетрахлорметана и дихлорэтана они переходят в графеновые слои толщиной 0,54 нм. Этот химический метод не единственный, и, меняя органические растворители и химикаты, можно получить нанометровые слои графита[34]. Один из химических методов получения графена основан на восстановлении оксида графита. Первое упоминание о получении хлопьев восстановленного монослойного оксида графита (оксида графена) было уже в 1962 году[35]. Восстановлением монослойной пленки оксида графита, например, в атмосфере гидразина с последующим отжигом в смеси аргон/водород, могут быть получены графеновые пленки. Однако, качество графена, полученного восстановлением оксида графита, ниже по сравнению с графеном, полученным скотч-методом вследствие неполного удаления различных функциональных групп. Нанесение пленки оксида графита на DVD диск и обработка лазером в DVD дисководе привели к получению на диске пленки графена с высокой электропроводностью (1738 См/м) и удельной поверхностью 1520 м2/г[36][37]. В статьях[38][39] описан ещё один химический метод получения графена, встроенного в полимерную матрицу. Следует упомянуть ещё два метода: радиочастотное плазмохимическое осаждение из газовой фазы (англ. PECVD)[40] и рост при высоком давлении и температуре (англ. HPHT)[41]. Последний можно использовать для получения плёнок большой площади. Если кристалл пиролитического графита и подложку поместить между электродами, то, как показано в работе[42], можно добиться того, что кусочки графита с поверхности, среди которых могут оказаться плёнки атомарной толщины, под действием электрического поля могут перемещаться на подложку окислённого кремния. Для предотвращения пробоя (между электродами прикладывали напряжение от 1 до 13 кВ) между электродами также помещали тонкую пластину слюды. Существует также несколько сообщений[9][10], посвящённых получению графена, выращенного на подложках карбида кремния SiC(0001). Графитовая плёнка формируется при термическом разложении поверхности подложки SiC, причём качество выращенной плёнки зависит от того, какая стабилизация у кристалла: C -стабилизированная или Si -стабилизированная поверхность — в первом случае качество плёнок выше. Этот метод получения графена гораздо ближе к промышленному производству. В работах[43][44] та же группа исследователей показала, что, несмотря на то, что толщина слоя графита составляет больше одного монослоя, в проводимости участвует только один слой в непосредственной близости от подложки, поскольку на границе SiC-C из-за разности работ выхода двух материалов образуется нескомпенсированный заряд. Свойства такой плёнки оказались эквивалентны свойствам графена. Дефекты[править | править вики-текст] Идеальный графен состоит исключительно из шестиугольных ячеек. Присутствие пяти- и семиугольных ячеек будет приводить к различного родадефектам. Наличие пятиугольных ячеек приводит к сворачиванию атомной плоскости в конус. Структура с 12 такими дефектами известна под названием фуллерен. Присутствие семиугольных ячеек приводит к образованию седловидных искривлений атомной плоскости. Комбинация этих дефектов и нормальных ячеек может приводить к образованию различных форм поверхности. Возможные применения[править | править вики-текст] Основные статьи: Графеновый полевой транзистор, Графеновые наноленты Считается, что на основе графена можно сконструировать баллистический транзистор. В марте 2006 года группа исследователей из технологического института штата Джорджия заявила, что ими был получен полевой транзистор на графене, а также квантово-интерференционный прибор[45]. Исследователи полагают, что благодаря их достижениям в скором времени появится новый класс графеновой наноэлектроники с базовой толщинойтранзисторов до 10 нм. Данный транзистор обладает большим током утечки, то есть нельзя разделить два состояния с закрытым и открытым каналом. Использовать напрямую графен при создании полевого транзистора без токов утечки не представляется возможным из-за отсутствия запрещённой зоны в этом материале, поскольку нельзя добиться существенной разности в сопротивлении при любых приложенных к затвору напряжениях, то есть не получается задать два состояния, пригодных для двоичной логики: проводящее и непроводящее. Сначала нужно как-то создать запрещённую зону достаточной ширины при рабочей температуре, чтобы термически возбуждённые носители давали малый вклад в проводимость. Один из возможных способов предложен в работе[6]. В этой статье предлагается создать тонкие полоски графена с такой шириной, чтобы благодаря квантово-размерномуэффекту ширина запрещённой зоны была достаточной для перехода в диэлектрическое состояние (закрытое состояние) прибора при комнатной температуре (28 мэВ соответствует ширине полоски 20 нм). Благодаря высокой подвижности (значительно большей, чем подвижность в кремнии, используемом в микроэлектронике) 104 см²·В−1·с−1 быстродействие такого транзистора будет заметно выше. Несмотря на то, что это устройство уже способно работать как транзистор, затвор к нему ещё не создан. Другая область применения предложена в статье[46] и заключается в использовании графена в качестве очень чувствительного сенсора для обнаружения отдельных молекул химических веществ, присоединённых к поверхности плёнки. В этой работе исследовались такие вещества, как NH3, CO, H2O, NO2. Сенсор размером 1 × 1 мкм использовался для детектирования присоединения отдельных молекул NO2 к графену. Принцип действия этого сенсора заключается в том, что разные молекулы выступают донорами и акцепторами, что в свою очередь ведёт к изменению сопротивления графена. В работе[47] теоретически исследуется влияние различных использованных в отмеченном выше эксперименте примесей на проводимость графена. В работе[48] было показано, что NO2 молекула является хорошим акцептором благодаря своим парамагнитным свойствам, а диамагнитная молекула N2O4создаёт уровень близко к точке электронейтральности. В общем случае примеси, молекулы которых имеют магнитный момент (неспаренный электрон), обладают более сильными легирующими свойствами. Ещё одна перспективная область применения графена — его использование для изготовления электродов в ионисторах (суперконденсаторах). Опытные образцы ионисторов на графене имеют удельную энергоёмкость 32 Вт·ч/кг, сравнимую с таковой для свинцово-кислотных аккумуляторов (30−40 Вт·ч/кг)[49]. Недавно был создан новый тип светодиодов на основе графена (LEC)[50]. В 2011 году в журнале Science была опубликована работа[51], где на основе графена предлагалась схема двумерного метаматериала (может быть востребован в оптике и электронике). Физика[править | править вики-текст] Физические свойства нового материала можно изучать по аналогии с другими подобными материалами. В настоящее время экспериментальные и теоретические исследования графена сосредоточены на стандартных свойствах двумерных систем: проводимости, квантовом эффекте Холла, слабой локализации и других эффектах, исследованных ранее в двумерном электронном газе. Теория [править | править вики-текст] Основная статья: Физика графена В этом параграфе кратко описываются основные положения теории, некоторые из которых получили экспериментальное подтверждение, а некоторые ещё ждут верификации. Кристаллическая структура [править | править вики-текст] Рис. 3. Изображение гексагональной решётки графена. Жёлтым цветом показана элементарная ячейка, красным и зелёным цветами показаны узлы различных подрешёток кристалла. e 1 и e 2 — вектора трансляций Кристаллическая решётка графена представляет собой плоскость, состоящую из шестиугольных ячеек, то есть является двумерной гексагональной кристаллической решёткой. Для такой решётки известно, что её обратная решёткатоже будет гексагональной. В элементарной ячейке кристалла находятся два атома, обозначенные A и B. Каждый из этих атомов при сдвиге на вектора трансляций (любой вектор вида , где m и n — любые целые числа) образует подрешётку из эквивалентных ему атомов, то есть свойства кристалла независимы от точек наблюдения, расположенных в эквивалентных узлах кристалла. На рисунке 3 представлены две подрешётки атомов, закрашенные разными цветами: зелёным и красным. Расстояние между ближайшими атомами углерода в шестиугольниках, обозначенное , составляет 0,142 нм.Постоянную решётки () можно получить из простых геометрических соображений. Она равна , то есть 0,246 нм. Если определить за начало координат точку, соответствующую узлу кристаллической решётки (подрешётка A), из которой начинаются векторы трансляций с длиной векторов, равной и ввести двумерную декартову систему координат в плоскости графена с осью ординат, направленной вниз, и осью абсцисс, направленной по отрезку, соединяющему соседние узлы A и B, то тогда координаты концов векторов трансляций, начинающихся из начала координат, запишутся в виде[26]: а соответствующие им векторы обратной решётки: (без множителя ). В декартовых координатах положение ближайших к узлу подрешётки A (все атомы которой на рисунке 3 показаны красным) в начале координат атомов из подрешётки B (показаны соответственно зелёным цветом) задаётся в виде: Зонная структура [править | править вики-текст] Основная статья: Зонная структура графена Кристаллическая структура материала находит отражение во всех его физических свойствах. В особенности сильно от порядка, в котором расположены атомы в кристаллической решётке, зависит зонная структура кристалла. Рис. 4: Ближайшие атомы в окружении центрального узла (A) решётки. Красная пунктирная окружность соответствует ближайшим соседям из той же самой подрешётки кристалла (A), а зелёная окружность соответствует атомам из второй подрешётки кристалла (B) Зонная структура графена рассчитана в статье[26] в приближении сильно связанных электронов. На внешней оболочке атома углерода находятся 4 электрона, три из которых образуют связи с соседними атомами в решётке при перекрывании sp ²-гибридизированных орбиталей, а оставшийся электрон находится в 2 pz -состоянии (именно это состояние отвечает в графите за образование межплоскостных связей, а в графене — за образование энергетических зон). В приближении сильно связанных электронов полная волновая функция всех электронов кристалла записывается в виде суммы волновых функций электронов из разных подрешёток где коэффициент λ — некий неизвестный (вариационный) параметр, который определяется из минимума энергии. Входящие в уравнение волновые функции и записываются в виде суммы волновых функций отдельных электронов в различных подрешётках кристалла Здесь и — радиус-векторы, направленные на узлы кристаллической решётки, а и — волновые функции электронов, локализованных вблизи этих узлов. В приближении сильно связанных электронов интеграл перекрытия (), то есть сила взаимодействия, быстро спадает на межатомных расстояниях. Другими словами — взаимодействие волновой функции центрального атома с волновыми функциями атомов, расположенных на зелёной окружности (см. рис. 4), вносит основной вклад в формирование зонной структуры графена. Энергетический спектр электронов в графене имеет вид (здесь учтены только ближайшие соседи, координаты которых задаются по формуле (1.3)) где знак «+» соответствует электронам, а «-» — дыркам. Линейный закон дисперсии [править | править вики-текст] Основная статья: Уравнение Дирака (графен) Рис. 5. Изолинии постоянной энергии (формула (2.4)). Жирный чёрный шестиугольник — перваязона Бриллюэна. Показаны также красные окружности на краях первой зоны Бриллюэна, где закон дисперсии носителей линеен. K и K' обозначают две долины в k -пространстве с неэквивалентными волновыми векторами Из уравнения (2.4) следует, что вблизи точек соприкосновения валентной зоны и зоны проводимости (K и K') закон дисперсии для носителей (электронов) в графене представляется в виде: где — скорость Ферми (экспериментальное значение[11] =106 м/с), — модуль волнового вектора в двумерном пространстве с компонентами отсчитанного от K или K' точек Дирака, — постоянная Планка. Здесь следует отметить, что такого рода спектром обладает фотон, поэтому говорят, что квазичастицы (электроны и дырки, энергия для которых выражается формулой ) в графене обладают нулевой эффективной массой. Скорость Ферми играет роль «эффективной» скорости света. Так как электроны и дырки — фермионы, то они должны описываться уравнением Дирака, но с нулевой массой частиц и античастиц (аналогично уравнениям для безмассовых нейтрино). Кроме того, так как графен — двухдолинный полуметалл, то уравнение Дирака должно быть модифицировано для учёта электронов и дырок из разных долин (K, K'). В итоге мы получим восемь дифференциальных уравнений первого порядка, которые включают такие характеристики носителей, как принадлежность к определённой подрешётке (A, B) кристалла, нахождение в долине (K, K') и проекцию спина. Решения этих уравнений описывают частицы с положительной энергией (электроны) и античастицы с отрицательной энергией (дырки). Обычно спин электрона не принимают во внимание (когда отсутствуют сильные магнитные поля), и гамильтониан уравнения Дирака записывается в виде:
|