Термическая диффузия примесей
Диффузия проводится с целью внедрения атомов легирующего элемента в кристаллическую решетку полупроводника для образования области с противоположным по отношению к исходному материалу типом проводимости. Диффузионная область оказывается ограниченной p-n-переходом. Количество введенной примеси должно быть достаточным для компенсации влияния примеси в исходном материале и для создания избытка примеси, обеспечивающего проводимость противоположного типа. Величина проводимости диффузионной области определяется концентрацией избыточной (нескомпенсированной) примеси. При высокой температуре (около 1000 ℃) примесные атомы поступают через поверхность и распространяются вглубь вследствие теплового движения. Основной механизм проникновения примесного атома в кристаллическую решетку состоит в последовательном перемещении по вакансиям (пустым узлам) решетки. Менее вероятны перемещения по междоузлиям и обмен местами с соседними атомами. Атом примеси электрически активен, т.е. выполняет функции донора или акцептора, в том случае, если занимает место в узле. Поэтому для получения сильнолегированных областей и (или) сокращения времени диффузии необходима высокая концентрация вакансий в поверхностном слое подложки. При невысокой температуре она очень мала – 107 см-3, а при температурах диффузии порядка 1000 ℃ достигает 1021 см-3 за счет поверхностного испарения атомов, диффузии атомов полупроводника из глубины пластины к поверхности (что эвкивалентно диффузии вакансий от поверхности вглубь), а также смещения атомов в междоузлия вследствие тепловых колебаний атомов. Легирование ведется через маску двуокиси кремния SiO2 или нитрида кремния Si3N4 толщиной 0,5 – 1 мкм (рис. 4.1).
Рис. 4.1. Локальная диффузия примеси через маску из двуокиси кремния
Концентрация введенной примеси – доноров Nд (х) на рис. 4.2 – максимальна у поверхности и спадает по направлению вглубь пластины. Расстояние х 0, на котором она равна концентрации исходной примеси (акцепторов NA на рис. 2.4), называют толщиной диффузионного слоя.
Рис. 4.2. Зависимость концентрации введенной примеси NД от расстояния х от поверхности пластины Если вводится примесь противоположного подложке типа, то х 0 соответствует металлургической границе образующегося p-n перехода. Так как примесь диффундирует не только вглубь, но и под маску, то есть травление изотропно (скорость его не зависит от направления), p-n переход на краях имеет форму, близкую к цилиндрической или сферической с радиусом кривизны r = х 0, а ширина диффузионного слоя в горизонтальном направлении у поверхности больше ширины окна в маске на величину 2r. Примеси характеризуются коэффициентом диффузии D, определяющим плотность потока П диффундирующих атомов (атомов, проходящих в единицу времени через единицу поверхности, перпендикулярной направлению диффузии):
П = - D grad N. (4.1)
Чем больше D, тем быстрее идет диффузия, тем меньшее время требуется для получения слоя заданной толщины х 0. Теоретические расчеты показывают, что х 0 ~√Dt, где t – время диффузии, тогда t ~ х 02/D. Для бора или фосфора при х 0 = (2 – 3) мкм и температуре Т = 1100 ℃ оно составляет около одного часа, а для мышьяка и сурьмы (доноров) на порядок больше из-за меньшего D. Формирование слоев большой толщины (около 10 мкм) - длительный процесс, который редко используется. Коэффициент диффузии сильно зависит от температуры – формула (3.2). На каждые 100 ℃ он увеличивается на порядок. Отсюда следует необходимость поддержки температуры диффузии с точностью до ± (0,1 – 0,2) ℃. Другой параметр примеси – предельная растворимость – максимальная концентрация примеси Nпред – незначительно увеличивается с ростом температуры: в два – три раза на каждые 300 ℃ при температурах ниже 1300 ℃. Предельная растворимость составляет 1020 – 1021 см-3 при Т = 1100 ℃. Использовать для легирования чистые вещества затруднительно, так как бор тугоплавок, мышьяк токсичен, фосфор легко воспламеняется. Поэтому в качестве источников примесей применяют их соединения в твердом (B2O3, P2O5), в жидком (BBr3, POCl3) или газообразном (В2Н6, РН3) состоянии, называемые диффузантами. На рис. 4.3 изображена схема однозонной диффузионной печи.
Рис. 4.3. Схема однозонной диффузионной печи
Пластины 1 помещают в кварцевую трубу 2 с открытым выходным концом 3, в которой с помощью нагревателя 4 поддерживается необходимая температура. Нейтральный газ-но –ситель (N2 или Ar), проходя через сосуд с диффузантом 5, захватывает его пары и переносит их к поверхности пластин. Одновременно в трубу поступает небольшое количество кислорода. В результате реакции кислорода с диффузантом образуется ангидрид легирующего элемента (B2O3 или Р2О5):
BBr3 + О2 → B2O3 +Br2,
POCl3 + O2 → P2O5 + Cl2, при взаимодействии которого с кремнием выделяются атомы примеси – В или Р:
Р2О5 + Si → SiO2 + P,
B2O3 + Si → SiO2 + B.
Если над пластиной присутствует избыток диффузанта, то у поверхности быстро устанавливается максимальная концентрация примеси, близкая к предельной растворимости, которая далее не изменяется. Такой режим диффузии называется загонкой примесей. Распределение концентрации примеси по толщине пластины при загонке изображено на рис. 4.4.а при разных температурах и времени процесса.
Рис. 4.4. Распределение диффундирующей примеси по глубине пластины: а – при неограниченном источнике примеси (загонке); б – при ограниченном источнике (разгонке)
В этом случае атомы примеси сосредоточены в узком поверхностном слое. Назначение загонки – введение определенной дозы легирования - числа атомов, поступающих через единицу поверхности, Nл = ∫N (x) dx = Nпр √Dt. Для окончательного формирования диффузионного слоя введенную примесь подвергают перераспределению на втором этапе диффузии – разгонке примесей. Подачу диффузанта прекращают, примесь распределяется вглубь при Nл = const, поверхностная концентрация Nпов уменьшается, а толщина слоя возрастает. На рис. 4.4.б приведены зависимости N (x) после загонки 1 и разгонки 2. Для создания нескольких слоев с разными типами проводимости диффузия проводится многократно. Например, при первой диффузии в кремнии n-типа можно сформировать p-слой, а затем при второй диффузии ввести в него доноры на меньшую глубину, получив структуру типа n-p-n. При многократной диффузии концентрация каждой новой вводимой примеси должна превышать концентрацию предыдущей, чтобы тип проводимости изменился и образовался p-n переход. Максимальная концентрация ограничены предельной растворимостью, поэтому число последовательный диффузий обычно не превышает трех. Последующие диффузии из-за высокой температуры вызывают нежелательную разгонку примесей, введенных на предыдущих этапах. Поэтому температуру и (или) время последующих диффузий выбирают меньшими, а коэффициент диффузии и предельную растворимость большими, чем для предыдущих.
|