Головна сторінка Випадкова сторінка КАТЕГОРІЇ: АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія |
Слідчий суддяДата добавления: 2015-08-27; просмотров: 615
Информация как количественное понятие имеет смысл только как результат осуществления какого–либо события, имеющего некоторую вероятность. Вероятностные же свойства объектов в экспериментах Дж. Брунера не анализировались и не являлись предметом исследования. Эксперименты проводились с испытуемыми однократно. Целью их было только посмотреть, какую стратегию выберет испытуемый в зависимости от варьирования некоторых условий. В таком эксперименте, естественно, нельзя было ставить вопрос о том, могут ли испытуемые прийти к оптимальной в соответствующих условиях стратегии в результате тренировки, какими факторами обусловливается изменение стратегий. Для того чтобы ответить на эти вопросы, необходимо было изменить методику таким образом, чтобы испытуемый находился в ситуации выбора различных информативных элементов в течение длительного времени, что достигается многократным предъявлением ему ограниченного набора задач. При таких условиях оказывается возможным выяснить, чем обусловливается его поисковая деятельность, вскрыть факторы, определяющие и регулирующие ее осуществление. Модификация методики О. К. Тихомировым.Соответствующая методика была предложена О. К. Тихомировым. Задачей исследований О. К. Тихомирова [1969] являлось изучение закономерности самостоятельного решения человеком задач с неопределенностью, т.е. задач, решение которых может заканчиваться различным результатом, и следовательно, до нахождения решения существует известная неопределенность относительно конечного результата задач на распознавание явлений. Для этой цели было применено сопоставление хода реального процесса решения мыслительной задачи на классификацию с оптимальным способом ее решения, выводимым на основании специальных математических расчетов, в результате чего оказывается возможным получить некоторую характеристику реального процесса. Использованная методика была во многих отношениях сходной с методикой образования искусственных понятий в варианте Выготского–Сахарова. И в том, и в другом случае задача испытуемого заключается в нахождении методом последовательных проб принципа классификации, избранного экспериментатором. Если же рассматривать группы объектов, которые в результате классификации должен был выделить испытуемый по аналогии с образованием искусственных понятий (определение каждой группы рассматривать как образование искусственного понятия), то основное отличие данной методики от методики Выготского–Сахарова заключается в том, что основание такой классификации является переменным, – центральный момент методики О. К. Тихомирова. Именно переменный характер классификации объектов позволил использовать для описания оптимальных способов решения задач методы теории вероятности и теории информации, так как это приводило к созданию статистической характеристики обследуемых объектов. С описанной модификацией методики Выготского–Сахарова студенты должны ознакомиться в настоящем задании. Цель задания – применить использование теории информации для изучения процесса образования искусственных понятий. Статистическая структура обследуемого поля.В методику входит весь набор стимульного материала, и указаны наборы карточек, которые рекомендуется использовать в опытах. В качестве наборов гипотез предлагается рассмотреть те 3 набора, которые представлены ниже, в разделе «Экспериментальный материал» с 2, 4 и 14 объектами в группе. При заданных условиях в длинном ряду предъявлений стимульных объектов (карточек) (рис. 12) каждая гипотеза может реализоваться (соответствовать предъявляемым карточкам) в среднем одинаковое число раз. Следовательно, вероятность реализации для каждой гипотезы равна: для I набора Р1 = Р2= 1/2; для II набора Р1= Р2= Р3= Р4= 1/4; для III набора Р1 = Р2= Р3 = ... = Р14 = 1/14. Очевидно, что чем больше возможных исходов, предъявляемых испытуемому для распознавания гипотез, тем более неопределенен конечный исход решения. Используя теорию информации, можно выразить неопределенность опыта более точно. В теории информации показано, что неопределенность опыта – Н, или энтропия, – является функцией числа возможных исходов и вероятности их реализации:
где Р – вероятность отдельного исхода опыта. Если исходы равновероятны, то Н = lg2M, где М – число возможных исходов опыта. Таким образом, условия разбираемой нами задачи будут описываться так: 1) Н= lg22 = 1 дв. ед.; 2) Н= lg24 = 2 дв. ед.; 3) Н– lg214 = 4 дв. ед. В принятых условиях эксперимента каждый из объектов, помимо своих постоянных признаков – количества фигур, нарисованных на карточках, их цвета, формы и фона (или числа каемок), приобретает совершенно определенную статистическую характеристику частоты, с которой этот объект оказывается входящим в искомую группу при многократном решении задач. Все объекты, таким образом, распределяются на две категории: объекты, которые никогда не входят в искомую группу; объекты, которые всегда входят в группу с вероятностью больше нуля, но меньше единицы. В связи с тем что объекты помимо своих постоянных признаков в принятых условиях приобретают еще один переменный признак (вхождения или невхождения в искомую группу), каждую отдельную пробу следует рассматривать также как опыт, могущий иметь несколько различных исходов с различной вероятностью их реализации и, следовательно, характеризующийся неопределенностью:
Таким образом, процесс решения задачи выступает как процесс последовательного обследования поля, имеющего некоторую статистическую характеристику, а отдельные пробы могут относиться к объектам с различной энтропией появления проверяемого признака. Поскольку получаемая информация равна уменьшению исходной неопределенности: I = H1 – Н2, результаты проверки различных объектов могут различаться по их информативности. Применим теперь тот же метод к анализу второй пробы с учетом одного осложняющего условия: если перед первой пробой для каждой программы статистическая характеристика обследуемого поля является постоянной, то перед вторым выбором распределение вероятностей получения «да» для всех объектов поля зависит от результатов предшествующего выбора, т.е. имеет место некоторое распределение условных вероятностей. Поскольку отдельные пробы имеют различную информативность, множество различных способов решения данной задачи можно оценивать по тому, как соотносятся необходимая и избыточная информации, собираемые испытуемым, для решения этой задачи при применении различных способов. При распознавании гипотез в одном наборе оптимальным способом поиска будет выбор любого объекта с вероятностью получения положительного ответа 0,5, дающий информацию, равную 1 дв. ед. При распознавании гипотез во втором наборе оптимальным способом поиска будет являться последовательный выбор двух объектов, дающий каждый соответственно по 1 дв. ед.
|