Головна сторінка Випадкова сторінка КАТЕГОРІЇ: АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія |
Веймарська республікаДата добавления: 2015-08-31; просмотров: 728
Она характеризует результат или эффективность функционирования экономической системы. Значения ее формируются в процессе и внутри функционирования этой системы под воздействием ряда других переменных и факторов, часть из которых поддается регистрации, управлению и планированию. В регрессионном анализе результирующая переменная играет роль функции, значение которой определяется значениями объясняющих переменных, выполняющих роль аргументов. По своей природе результирующая переменная всегда случайна (стохастична). Объясняющие (независимые, экзогенные) переменные X - это переменные, которые поддаются регистрации и описывают условия функционирования реальной экономической системы. Они в значительной мере определяют значения результирующих переменных. Обычно часть из них поддается регулированию и управлению. Еще их называют факторными признаками. В регрессионном анализе это аргументы результирующей функции Y. По своей природе они могут быть как случайными, так и неслучайными. В то время как зависимая переменная должна быть непрерывной (за исключением логистической регрессии), независимые переменные могут быть как прерывными, так и категориальными, такими как «пол» или «тип применяемого препарата». Если все независимые переменные являются категориальными (или большинство из них являются категориальными), то в этом случае лучше использовать дисперсионный анализ. Функция , описывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии[1]. Уравнение регрессии показывает ожидаемое значение зависимой переменной при определенных значениях зависимых переменных . В зависимости от количества включенных в модель факторов Х модели делятся на однофакторные (парная модель регрессии) и многофакторные (модель множественной регрессии). В зависимости от вида функции модели делятся на линейные и нелинейные. Модель множественной линейной регрессии имеет вид: y i = a0 + a1x i 1 +a2x i 2 +…+ ak x i k + ei (1) - количество наблюдений. коэффициент регрессии aj показывает, на какую величину в среднем изменится результативный признак , если переменную xj увеличить на одну единицу измерения при фиксированных значениях остальных переменных, входящих в модель, т. е. aj является нормативным коэффициентом. Коэффициент может быть положительным и отрицательным. Анализ уравнения (1) и методика определения параметров становятся более наглядными, а расчетные процедуры существенно упрощаются, если воспользоваться матричной формой записи: (2) где – вектор зависимой переменной размерности п ´ 1, представляющий собой п наблюдений значений . - матрица п наблюдений независимых переменных , размерность матрицы равна п ´ (k+1) . Дополнительный фактор , состоящий из единиц, вводится для вычисления свободного члена. В качестве исходных данных могут быть использованы временные ряды или пространственная выборка. - количество факторов, включенных в модель. a— подлежащий оцениванию вектор неизвестных параметров размерности (k+1) ´ 1; — вектор случайных отклонений (возмущений) размерности п ´ 1. отражает тот факт, что изменение будет неточно описываться изменением объясняющих переменных , так как существуют и другие факторы, неучтенные в данной модели. Таким образом, Y = , X = , , a = .
Уравнение (2) содержит значения неизвестных параметров a0,a1,a2,… ,ak . Эти величины оцениваются на основе выборочных наблюдений, поэтому полученные расчетные показатели не являются истинными, а представляют собой лишь их статистические оценки. Модель линейной регрессии, в которой вместо истинных значений параметров подставлены их оценки (а именно такие регрессии и применяются на практике), имеет вид , (3) где A— вектор оценок параметров; е — вектор «оцененных» отклонений регрессии, остатки регрессии е = Y - ХА; —оценка значений Y, равнаяХА. Построение уравнения регрессии осуществляется, как правило, методом наименьших квадратов (МНК), суть которого состоит в минимизации суммы квадратов отклонений фактических значений результатного признака от его расчетных значений, т.е.: . Формулу для вычисления параметров регрессионного уравнения по методу наименьших квадратов приведем без вывода (4). Для того чтобы регрессионный анализ, основанный на обычном методе наименьших квадратов, давал наилучшие из всех возможных результаты, должны выполняться следующие условия, известные как условия Гаусса – Маркова. Первое условие. Математическое ожидание случайной составляющей в любом наблюдении должно быть равно нулю. Иногда случайная составляющая будет положительной, иногда отрицательной, но она не должна иметь систематического смещения ни в одном из двух возможных направлений Фактически если уравнение регрессии включает свободный член, то обычно это условие выполняется автоматически, так как роль константы состоит в определении любой систематической составляющей , которую не учитывают объясняющие переменные, включенные в уравнение регрессии. Второе условие означает, что дисперсия случайной составляющей должна быть постоянна для всех наблюдений.Иногда случайная составляющая будет больше, иногда меньше, однако не должно быть априорной причины для того, чтобы она порождала большую ошибку в одних наблюдениях, чем в других. Эта постоянная дисперсия обычно обозначается , или часто в более краткой форме , а условие записывается следующим образом: . Выполнимость данного условия называется гомоскедастичностью (постоянством дисперсии отклонений). Невыполнимость данной предпосылки называется гетероскедастичностью, (непостоянством дисперсии отклонений). Условие независимости. Третье условие предполагает отсутствие систематической связи между значениями случайной составляющейв любых двух наблюдениях. Например, если случайная составляющая велика и положительна в одном наблюдении, это не должно обусловливать систематическую тенденцию к тому, что она будет большой и положительной в следующем наблюдении. Случайные составляющие должны быть независимы друг от друга. Данное условие можно записать следующим образом:
Возмущения не коррелированны. Это условие означает, что отклонения регрессии (а значит, и сама зависимая переменная) не коррелируют. Условие некоррелируемости ограничительно, например, в случае временного ряда . Тогда третье условиеозначает отсутствие автокорреляции ряда . Четвертое условие состоит в том, что в модели (1) возмущение (или зависимая переменная ) есть величина случайная, а объясняющая переменная - величина неслучайная. Если это условие выполнено, то теоретическая ковариация между независимой переменной и случайным членом равна нулю. Наряду с условиями Гаусса — Маркова обычно также предполагается нормальность распределения случайного члена. В тех случаях, когда выполняются перечисленные предпосылки, оценки, полученные по МНК, будут обладать свойствами несмещенности, состоятельности и эффективности. Качество модели регрессии связывают с адекватностью модели наблюдаемым (эмпирическим) данным. Проверка адекватности (или соответствия) модели регрессии наблюдаемым данным проводится на основе анализа остатков - . Анализ остатков позволяет получить представление, насколько хорошо подобрана сама модель и насколько правильно выбран метод оценки коэффициентов. Согласно общим предположениям регрессионного анализа, остатки должны вести себя как независимые (в действительности, почти независимые) одинаково распределенные случайные величины. При анализе качества модели регрессии, в первую очередь, используется коэффициент детерминации, который определяется следующим образом: , (5) где - среднее значение зависимой переменной, - предсказанное (рассчитанное по уравнению регрессии) значение зависимой переменной. Коэффициент детерминациипоказывает долю вариации результативного признака, находящегося под воздействием изучаемых факторов, т. е. определяет, какая доля вариации признака Y учтена в модели и обусловлена влиянием на него факторов, включенных в модель. Чем ближе к 1, тем выше качество модели. Для оценки качества регрессионных моделей целесообразно также использовать коэффициент множественной корреляции (индекс корреляции) R R = = (6) Данный коэффициент является универсальным, так как он отражает тесноту связи и точность модели, а также может использоваться при любой форме связи переменных. Важным моментом является проверка значимости построенного уравнения в целом и отдельных параметров. Оценить значимость уравнения регрессии – это означает установить, соответствует ли математическая модель, выражающая зависимость между Y и Х, фактическим данным и достаточно ли включенных в уравнение объясняющих переменных Х для описания зависимой переменной Y Оценка значимости уравнения регрессии производится для того, чтобы узнать, пригодно уравнение регрессии для практического использования (например, для прогноза) или нет. Для проверки значимости модели регрессии используется F-критерий Фишера. Если расчетное значение с n1= k и n2 = (n - k - 1) степенями свободы, где k – количество факторов, включенных в модель, больше табличного при заданном уровне значимости, то модель считается значимой. (7) В качестве меры точности применяют несмещенную оценку дисперсии остаточной компоненты, которая представляет собой отношение суммы квадратов уровней остаточной компоненты к величине (n- k -1), где k – количество факторов, включенных в модель. Квадратный корень из этой величины ( ) называется стандартной ошибкой: (8) значимость отдельных коэффициентов регрессии проверяется по t-статистике путем проверки гипотезы о равенстве нулю j-го параметра уравнения (кроме свободного члена): , (9) где — это стандартное (среднеквадратическое) отклонение коэффициента уравнения регрессии aj.Величина представляет собой квадратный корень из произведения несмещенной оценки дисперсии и j -го диагонального элемента матрицы, обратной матрице системы нормальных уравнений. где - диагональный элемент матрицы . Если расчетное значение t-критерия с (n - k - 1) степенями свободы превосходит его табличное значение при заданном уровне значимости, коэффициент регрессии считается значимым. В противном случае фактор, соответствующий этому коэффициенту, следует исключить из модели (при этом ее качество не ухудшится). Уравнение регрессии применяют для расчета значений показателя в заданном диапазоне изменения параметров. Оно ограниченно пригодно для расчета вне этого диапазона, т.е. его можно применять для решения задач интерполяции и в ограниченной степени для экстраполяции. Прогноз, полученный подстановкой в уравнение регрессии ожидаемого значения параметра, является точечным. Вероятность реализации такого прогноза ничтожна мала. Целесообразно определить доверительный интервал прогноза. Для того чтобы определить область возможных значений результативного показателя, при рассчитанных значениях факторов следует учитывать два возможных источника ошибок: рассеивание наблюдений относительно линии регрессии и ошибки, обусловленные математическим аппаратом построения самой линии регрессии. Ошибки первого рода измеряются с помощью характеристик точности, в частности, величиной . Ошибки второго рода обусловлены фиксацией численного значения коэффициентов регрессии, в то время как они в действительности являются случайными, нормально распределенными. Для линейной модели регрессии при прогнозировании индивидуальных значений доверительный интервал рассчитывается по формуле (10) для этого оценивается величина отклонения от линии регрессии (обозначим ее U): (10) где .
|