Головна сторінка Випадкова сторінка КАТЕГОРІЇ: АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія |
Г ояитії захисту пряв учасників виконавчого провадженняДата добавления: 2015-10-15; просмотров: 758
1. Найдите точки разрыва функции > readlib(iscont): readlib(discont): > iscont(exp(1/(x+3)),x=-infinity..+infinity); false Это означает, что функция не является непрерывной. Поэтому следует найти точки разрыва с помощью команды: > discont(exp(1/(x+3)),x); {-3} Ответ наберите в текстовом режиме в новой строке: “Точка разрыва x= 3.” 2. Найти точки разрыва функции > readlib(singular): > iscont(tan(x/(2-x)),x=-infinity..infinity); false > singular(tan(x/(2-x)),x); {x=2},{x=2 } Здесь _N – целые числа. Ответ наберите в текстовом режиме в новой строке: Экстремумы. Наибольшее и наименьшее значение функции. В Maple для исследования функции на экстремум имеется команда extrema(f,{cond},x,’s’) , где f- функция, экстремумы которой ищутся, в фигурных скобках {cond} указываются ограничения для переменной, х – имя переменной, по которой ищется экстремум, в апострофах ’s’ – указывается имя переменной, которой будет присвоена координата точки экстремума. Если оставить пустыми фигурные скобки {}, то поиск экстремумов будет производиться на всей числовой оси. Результат действия этой команды относится к типу set. Пример: > readlib(extrema): > extrema(arctan(x)-ln(1+x^2)/2,{},x,’x0’);x0; {{x=1}} В первой строке вывода приводится экстремум функции, а во второй строке вывода – точка этого экстремума. К сожалению, эта команда не может дать ответ на вопрос, какая из точек экстремума есть максимум, а какая – минимум. Для нахождения максимума функции f(x) по переменной х на интервале используется команда maximize(f,x,x=x1..x2), а для нахождения минимума функции f(x)по переменной х на интервале используется команда minimize(f, x, x=x1..x2). Если после переменной указать ’infinity’или интервал x=-infinity..+infinity, то команды maximize и minimize будут искать, соответственно, максимумы и минимумы на всей числовой оси как во множестве вещественных чисел, так и комплексных. Если такие параметры не указывать, то поиск максимумов и минимумов будет производиться только во множестве вещественных чисел. Пример: > maximize(exp(-x^2),{x}); Недостаток этих команд в том, что они выдают только значения функции в точках максимума и минимума, соответственно. Поэтому для того, чтобы полностью решить задачу об исследовании функции y=f(x) на экстремумы с указанием их характера (max или min) и координат (x, y) следует сначала выполнить команду: > extrema(f,{},x,’s’);s; а затем выполнить команды maximize(f,x); minimize(f,x).После этого будут полностью найдены координаты всех экстремумов и определены их характеры (max или min). Команды maximize и minimize быстро находят абсолютные экстремумы, но не всегда пригодны для нахождения локальных экстремумов. Команда extrema вычисляет так же критические точки, в которых функция не имеет экстремума. В этом случае экстремальных значений функции в первой строке вывода будет меньше, чем вычисленных критических точек во второй строке вывода. Выяснить характер найденного экстремума функции f(x)в точке x=x0 можно, если вычислить вторую производную в этой точке и по ее знаку сделать вывод: если , то в точке x0 будет min, а если то max. В последней версии пакета аналитических вычислений описанный выше недостаток команд maximize иminimize устранен. Координаты точек максимума или минимума можно получить, если в параметрах этих команд после переменной записать через запятую новую опцию location. В результате в строке вывода после самого максимума (минимума) функции будут в фигурных скобках указаны координаты точек максимума (минимума). Например: > minimize(x^4-x^2, x, location); , { , } В строке вывода получились координаты минимумов и значения функции в этих точках. Команды extrema,maximize и minimizeобязательно должны быть загружены из стандартной библиотеки командой readlib(name), где name – имя загружаемой команды.
|