Головна сторінка Випадкова сторінка КАТЕГОРІЇ: АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія |
Процедура контролю за суднами під час їх перебування в ПЗДата добавления: 2015-10-19; просмотров: 593
Если мгновенный центр скоростей Р найден и если известна угловая скорость фигуры, то скорость любой точки В фигуры определяется как скорость этой точки во вращательном движении вокруг МЦС, т. е. вектор перпендикулярен к отрезку РВ и по модулю равен w×РВ. Отсюда следует, что скорости точек плоской фигуры пропорциональны их расстояниям от мгновенного центра скоростей, т. е. Ускорениелюбой точки движущейся плоской фигуры можно определить двумя способами: 1) как геометрическую сумму ускорений этой точки в поступательном и вращательном движениях фигуры и 2) как ускорение этой точки во вращательном движении вокруг мгновенного центра ускорений, причем мгновенным центром ускорений называется такая точка Плоской фигуры, ускорение которой в данный момент равно нулю. Если известны ускорение некоторой точки А фигуры (ускорение полюса), а также угловая скорость и угловое ускорение фигуры, то ускорение любой ее точки В определяется по формуле Здесь вектор - ускорение точки В во вращательном движении вокруг полюса касательная и нормальная составляющие этого ускорения. Следовательно, Билет14.Сложное движение точки. Относительное, переносное и абсолютное движения. Теорема о сложении скоростей. При решении задач оказывается целесообразным рассматривать движение точки по отношению к двум СО, из которых одна считается основной (условно неподвижной), а другая - движущейся по отношению к первой. Движение, совершаемое при этом точкой, называют сложным. Рассмотрим точку М, движущуюся по отношению к подвижной СО Oxyz, которая, в свою очередь, движется относительно неподвижной СО О1х1у1z1 (рисунок 3.8). Введем определения: а) движение, совершаемое точкой М по отношению к подвижной СО (к осям Oxyz), называется относительным движением; б) движение, совершаемое подвижной СО Oxyz по отношению к неподвижной системе О1х1у1z1, является для точки М переносным движением. Скорость неизменно связанной с подвижными осями Охуz точки m, с которой в данный момент времени совпадает движущаяся точка М, называется переносной скоростью точки М в этот момент времени ( ), а ускорение этой точки m - переносным ускорением точки М. Тогда , ; (3.8.1) в) движение, совершаемое точкой по отношению к неподвижной системе отсчета О1х1у1z1, называется абсолютным или сложным.
|