Свободное падение тел
Свободным падением тел называют падение тел на Землю в отсутствие сопротивления воздуха (в пустоте). В конце XVI века знаменитый итальянский ученый Г. Галилей опытным путем установил с доступной для того времени точностью, что в отсутствие сопротивления воздуха все тела падают на Землю равноускоренно, и что в данной точке Земли ускорение всех тел при падении одно и то же. До этого в течение почти двух тысяч лет, начиная с Аристотеля, в науке было принято считать, что тяжелые тела падают на Землю быстрее легких. Ускорение, с которым падают на Землю тела, называется ускорением свободного падения. Вектор ускорения свободного падения обозначается символом он направлен по вертикали вниз. В различных точках земного шара в зависимости от географической широты и высоты над уровнем моря числовое значение g оказывается неодинаковым, изменяясь примерно от 9, 83 м/с2 на полюсах до 9, 78 м/с2 на экваторе. На широте Москвы g = 9, 81523 м/с2. Обычно, если в расчетах не требуется высокая точность, то принимают числовое значение g у поверхности Земли равным 9, 8 м/с2 или даже 10 м/с2. Простым примером свободного падения является падение тела с некоторой высоты h без начальной скорости. Свободное падение является прямолинейным движением с постоянным ускорением. Если направить координатную ось OY вертикально вверх, совместив начало координат с поверхностью Земли, то для анализа свободного падения без начальной скорости можно использовать формулу (***) §1.4, положив υ 0 = 0, y 0 = h, a = – g. Обратим внимание на то, что если тело при падении оказалось в точке с координатой y < h, то перемещение s тела равно s = y – h < 0. Эта величина отрицательна, так как тело при падении перемещалось навстречу выбранному положительному направлению оси OY. В результате получим:
Скорость отрицательна, так как вектор скорости направлен вниз. Время падения t n тела на Землю найдется из условия y = 0:
Скорость тела в любой точке составляет: В частности, при y = 0 скорость υ n падения тела на землю равна
Пользуясь этими формулами, можно вычислить время падения тела с данной высоты, скорость падения тела в любой момент после начала падения и в любой точке его траектории и т. д. Аналогичным образом решается задача о движении тела, брошенного вертикально вверх с некоторой начальной скоростью υ 0. Если ось OY по-прежнему направлена вертикально вверх, а ее начало совмещено с точкой бросания, то в формулах равноускоренного прямолинейного движения следует положить: y 0 = 0, υ 0 > 0, a = – g. Это дает:
Через время υ 0 / g скорость тела υ обращается в нуль, т. е. тело достигает высшей точки подъема. Зависимость координаты y от времени t выражается формулой Тело возвращается на землю (y = 0) через время 2υ 0 / g, следовательно, время подъема и время падения одинаковы. Во время падения на землю скорость тела равна –υ 0, т. е. тело падает на землю с такой же по модулю скоростью, с какой оно было брошено вверх. Максимальная высота подъема
На рис. 1.5.1 представлены графики скоростей для трех случаев движения тела с ускорением a = – g. График I соответствует случаю свободного падения тела без начальной скорости с некоторой высоты h. Падение происходило в течение времени t n = 1 с. Из формул для свободного падения легко получить: h = 5 м (все цифры в этих примерах округлены, ускорение свободного падения принято равным g = 10 м/с2). График II – случай движения тела, брошенного вертикально вверх с начальной скоростью υ 0 = 10 м/с. Максимальная высота подъема h = 5 м. Тело возвращается на землю через время 2 секунды. График III – продолжение графика I. Свободно падающее тело при ударе о землю отскакивает (мячик), и его скорость за очень короткое время меняет знак на противоположный. Дальнейшее движение тела не отличается от случая II. Задача о свободном падении тел тесно связана с задачей о движении тела, брошенного под некоторым углом к горизонту. Для кинематического описания движения тела удобно одну из осей системы координат направить вертикально вверх (ось OY), а другую (ось OX) - расположить горизонтально. Тогда движение тела по криволинейной траектории можно представить как сумму двух движений, протекающих независимо друг от друга – движения с ускорением свободного падения вдоль оси OY и равномерного прямолинейного движения вдоль оси OX. На рис. 1.5.2 изображен вектор начальной скорости тела и его проекции на координатные оси.
Таким образом, для движения вдоль оси OX имеем следующие условия:
а для движения вдоль оси OY
Приведем здесь некоторые формулы, описывающие движение тела, брошенного под углом α к горизонту. Время полета: Дальность полета: Максимальная высота подъема:
Движение тела, брошенного под углом к горизонту, происходит по параболической траектории. В реальных условиях такое движение может быть в значительной степени искажено из-за сопротивления воздуха, которое может во много раз уменьшить дальность полета тела.
|