Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение Рейнольдса для смазочного слоя





Схема на рис.16.1 представляет задачу о вычислении несущей способности клиновидного слоя смазки вязкостью μ. Ламинарное течение жидкости в клиновом зазоре вызвано движением со скоростью U горизонтальной твердой плоскости относительно неподвижной пластины. Пластина единичной ширины расположена под малым углом к оси Х и образует величины зазоров h 1 и h 0 на входе и выходе из слоя смазки. Вертикальная ось У размещена на выходе из клинового зазора, длиной а. На схеме обозначены эпюры распределения давлений Р(х) и скоростей V (X, y) жидкости в пределах смазочного клина.

Рассматриваемая схема соответствует течению в подпятниках и подшипниках скольжения и разъясняет механизм формирования несущей способности смазочного слоя.

1. Геометрия течения описывается зависимостью высоты смазочного слоя от координаты Х:

 

h (х) = h 0 (1+ β х), (16.1)

 

где β = (h 1 - h 0)/ а h 0 = (к-1)/а.

2. Выделяя в зазоре бесконечно малый объем жидкости 1 dхdy, на который действуют силы распределенного по длине Х давления Р(х) и силы вязкого трения τ (х, у), запишем уравнение движения. Поскольку движение частиц жидкости происходит практически без ускорения и только вдоль оси Х то это уравнение отражает равенство нулю суммы проекций сил на ось Х:

Р(х) 1 dy - [ Р(х) +( / dx) dx ]1 dy + [τ +(d τ / dy) dy ] 1 - τ 1 = 0,

 

или: - dР(х) / dx + (d τ / dy) dy =0. (16.2)

 

Согласно закону вязкого трения: τ (х, у) = μ dV (X, y)/ dy и 16.2 приобретает вид:

 

dР(х) / dx = μ d 2 V (х, , y)/ dy 2).(16.3)

 

В этом уравнении учитывается сложное распределение скоростей частиц жидкости в масляном клине, поэтому V (X, y) записывается как функция обеих координат.

 

 

 


3. Вычислим функцию V (X, y) дважды интегрируя 16.3 по переменной у с учетом граничных условий V (X, y) = - U при у =0 и V (X, y) = 0 при у = h (х).

 

V (X, y)= ( / dx) y 2/2μ + С 1 y + С 2,

При этом:

 

С 2= - U, С 1 = U / h (х) - [( / dx)] h (х)/2μ.

 

Распределение скоростей в масляном клине в явном виде зависит от координаты У, а от Х неявночерез градиент давления / dx) и h (х):

 

V (X, y) = ( / dx) y 2/2μ + { U / h (х) - [( / dx)] h (х) / 2μ } y – U. (16.4)

 

4. Для определения / dx воспользуемся уравнением сохранения массы и вычислим объемный расход жидкости в клине Q путем интегрирования 16.4 по у от нуля до h (х):

 

Q(х)= V (X, y) dy = h 3(х) ( / dx)/6μ +{ U / h (х) - h (х)[( / dx)]/2μ }0, 5 h 2(х) - U h (х)=

= - 0, 5 U h (х) – h 3(х)[(dР) / dx)]/12 μ = С3 = Const= - 0, 5 U h *. (16.5)

 

Из очевидного постоянства Q(х) следует его равенство С 3 = - 0, 5 U h *, где h * - высота клина при координате Х= ХМАХ, где эпюра давления имеет максимум, т.е. dР(х) / dx =0.

5. Производная dР(х) / dx, как это следует из 16.5 равна:

 

dР(х) / dx =U [ h * - h (х)]/ h 3(х),

 

а для заданной геометрии масляного клина выражается через 16.1 в явном виде и называется уравнением Рейнольдса:

 

dР(х) / dx =U β (ХМАХ - Х)/ h 30 (1 + β Х)3. (16.6)

 

6. Получаемая интегрированием 16.6 функция Р(х):

 

Р(х) = (6μ U β / h 30) ∫ (ХМАХ - Х)/ (1 + β Х)3 dx + С 4. (16.7)

 

содержит две постоянные - ХМАХ и С 4. Определяя последние через 2 граничных условия: Р(х) =0 при Х= 0 и Х=а, после вычислений и преобразований имеем:

 

С 4= 6μ U β (β ХМАХ - 1) / 2 β 2 h 20), ХМАХ = а/ (к - 1), (16.8)

 

Р(х) = [6μ U α / h 20] Х (к - 1)(а- Х) / (к + 1) [ а + Х (к - 1)]2. (16.9)

 

Зная закон распределения давления Р(х) легко получить координату центра давления.

7. Грузоподъемность смазочного клина единичной ширины G вычисляется интегрированием 16.9 в пределах от 0 до а:

 

G = - Р(х) dx = [6μ U α /(к - 1)2 h 20] [ - ln к + 2 (к - 1)/ (к + 1)]. (16.10)

 

 

Исследуя полученную функцию, нетрудно видеть, что предельное значение грузоподъемности при заданных μ, U и геометрии (β, к) определяется величиной h 0. Режим жидкостной смазки возможен только при h 0 большей, чем удвоенная высота профиля шероховатостей поверхностей пяты и подпятника. Это лимитирует грузоподъемность устройства.

Практика инженерных расчетов опор скольжения использует более сложные расчетные схемы. учитывающие конечность поперечных размеров, кривизну поверхностей, тепловыделение и т.д.

 







Дата добавления: 2014-12-06; просмотров: 1007. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия