Студопедия — Подшипниковые опоры насосов. Элементарная теория смазки
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Подшипниковые опоры насосов. Элементарная теория смазки






Для герметичных ГЦНПК использование опор скольжения вращающегося ротора зачастую является единственно приемлемым конструктивным решением, обеспечивающим необходимую надежность и долговечность машины. Малые размеры, простота изготовления, бесшумность в работе и другие достоинства опор скольжения при высоких нагрузках и частоте вращения вала могут быть реализованы только при рациональном конструировании, организации смазки и подборе материалов пар трения.

Рассмотрим схему действия простейшего подшипника, состоящего из втулки 1, окружающей с зазором Δ вращающийся с угловой скоростью ω вал 2 радиуса RB. Заполняющая зазор жидкость вязкостью μ формирует на поверхности вала тангенциальные усилия τ = μ W / Δ, зависящие от градиента скорости W / Δ, изображенного на рисунке 15.1, а.

 

       
   
 

 


 

 


Рис. 15.1.

 

Усредненые по поверхности тангециальные усилия τ СР при длине вала L образуют суммарную силу трения:

 

F ТР = τ СР R B L = К μ ω R BR B L / Δ, (15.1)

 

где К- коэффициент усреднения.

Условный коэффициент трения скольжения f ТР, определенный как отношение F ТР к нагрузке P, действующей на вал:

 

f ТР = F ТР/ P = К μ ω R BR B L / 2 R B L р СР Δ = К1 μ ω / р СР = К1 λ, (15.2)

 

зависит от основных эксплуатационных параметров (μ, ω, удельной нагрузки на подшипник р СР = P /2 R B L), от геометрии (К1 = К R B/Δ), а так же через величину К от физического механизма трения в зазоре.

На рис. 15.1, б представлена определенная экспериментально зависимость f ТР от, называемой характеристикой режима, - диаграмма Герси-Штрибека. Диаграмма иллюстрирует наличие нескольких видов трения в подшипнике, выделяя обозначенные участки кривой 1-2-3. Работа подшипника при наличии нагрузки Р происходит при смещении вала в зазоре, как это показано пунктирной окружностью на рис15.1, а. В результате втягивания жидкости в дугообразный клин -3 давление смазки возрастает, создавая согласно изображенной эпюре давлений уравновешивающую Р гидродинамическую силу. В зависимости от соотношения величины минимального зазора и высоты шероховатостей поверхностей втулки и вала реализуются обозначенные на диаграмме режимы смазки.

При малой λ поверхности вала и подшипника соприкасаются, а смазка в зоне контакта присутствует только в виде адсорбированных пленок. Такой режим трения, соответствует участку диаграммы 0-1 и называется граничным трением.

Полужидкостная смазка (участок 1-2) существует при нарушении сплошности смазочного слоя, когда его толщина недостаточна для предотвращения соприкосновений микронеровностей трущихся поверхностей. Этот вид смазки присутствует при малой вязкости μ и высокой р СР; он характеризуется быстрым уменьшением коэффициента трения до величины f ТР. MIN, который определяет границу λ КР режима жидкостной смазки.

Небольшой диапазон изменения 0< λ < λ КР позволяет иметь на пусковых режимах сравнительно безопасный переход работы подшипника от сухого трения через граничное и полужидкостное к жидкостной смазке - участку 2-3..

На этом участке диаграммы работа подшипника характеризуется отсутствием непосредственного контакта твердых поверхностей в области минимального зазора, а, следовательно, отсутствием износа и малыми коэффициентами трения. При жидкостной смазке подшипник устойчиво работает в широком диапазоне λ благодаря:

- самоподдерживающемуся процессу создания давления в слое смазки при эксцентричном положении вала,

- внутренней отрицательной обратной связи при изменении нагрузки, т.е. возрастанию противодавления с увеличением эксцентриситета,

- регулирующей роли уменьшения вязкости смазки с ростом температуры.

Действительно, при возрастании р СР уменьшается λ, но благодаря уменьшению f ТР снижается энерговыделение в слое смазки, т.е. ее температура. Связанное с этим увеличение μ восстанавливает значение λ и режим работы подшипника стабилизируется.

Обеспечение жидкостного трения в гидродинамических подшипниках требует применения высоковязкой смазки с высокой адгезионной способностью, что затрудняет создание подшипников, смазываемых водой в условиях герметичных ГЦНПК. Дело в том, что вязкость воды (10-3 Па.сек) намного меньше вязкости масел (1, 0 Па.сек), что позволяет реализовать режим жидкостной смазки только при малых удельных нагрузках. Если осуществить чисто жидкостный режим трения невозможно, то конструирование подшипниковых опор с заданными P, R B, L, ω сводится к подбору материалов и обеспечению надежного теплоотвода из зоны трения.

В качестве материалов подшипников с масляной смазкой используются:

- металлические сплавы: баббиты, бронзы, чугуны,

- металлокерамики и бронзографитовые и железографитовые композиции,

- неметаллические материалы: фторопластографиты, углеграфиты, тефлоны, текстолит, резина, дерево.

Последние нашли применение в смазываемых водой узлах трения, наблюдаемая при этом величина коэффициента трения в режиме полужидкостной смазки относительно невелика (порядка 0, 03-0, 05).

К настоящему времени теория и практика создания опор скольжения насосов представляется достаточно развитым разделом технических наук, что позволило отработать надежные и долговечные конструкции подшипников. Например, для ГЦНПК широкое распространение нашли опоры трения с вкладышами из фторопластографитов, работающих в паре с шипами, оснащенными твердыми металлическими втулками. Приближенный расчет этих узлов может быть выполнен по определенной экспериментально допускаемой величине произведения окружной скорости на удельную нагрузку (допустимому режиму работы): [W р СР] = [ ω R B р СР] < 106 Па. м/сек. Допускаемое значение удельной нагрузки таких опор [ р СР] лежит в пределах 0, 1 – 1, 0 МПа.

Конструкции подшипниковых опор и их методики расчета широко представлены в специальной литературе.

 







Дата добавления: 2014-12-06; просмотров: 754. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия