Энергии Солнца и ветра
С 1980 по 1990 г. стоимость электроэнергии, вырабатываемой солнечными, тепловыми и ветроэнергетическими установками, снизилась более чем в 5 раз. В настоящее время эти технологии конкурентоспособны с традиционными способами производства электроэнергии. В Италии и США уже созданы солнечные электростанции. Их экологическими недостатками являются большие затраты материалов и нарушения экологического равновесия под солнечными батареями, занимающими площадь в несколько гектаров. Наряду с этим намечаются и пути практического использования уже имеющихся биологических преобразователей. С точки зрения возможности относительно быстрой реализации наиболее заманчивым представляется следующий двухступенчатый метод: вначале под действием солнечного света на культуру быстрорастущих микроводорослей или других растений следует накапливать органическую биомассу, а затем с помощью специальных бактерий перерабатывать ее в высококалорийное топливо, например метан. Одним из наиболее перспективных, представляется процесс разложения воды на водород и кислород под действием солнечной радиации. Дело в том, что запасы воды на Земле практически неограниченны, а водород — это ценный химический продукт, который можно использовать в виде экологически чистого топлива, не дающего вредных отходов. Водород является лучшим топливом из всех известных видов: по теплотворности на единицу массы он в 2, 6 раза превосходит природный газ и в 3, 3 раза нефть или бензин. Кроме того, по мнению ряда ученых, он может передаваться по трубам на большие расстояния с затратами, близкими к стоимости передачи электрической энергии. Заметим, что вследствие непостоянства потока солнечной энергии, падающей на Землю в течение дня или в разные времена года, приходится использовать аккумуляторы энергии. Таким хорошим аккумулятором может быть сам водород, получаемый при разложении воды. Извлечь водород из воды можно как электролитически, что довольно дорого, так и прямым химическим (или фотохимическим) путем. Однако видимая часть солнечного света воду практически не разлагает. Поэтому вся проблема сводится к тому, чтобы найти соответствующие катализаторы. Отдельные стадии этого процесса в той или иной степени уже разработаны. Ближайшая задача состоит в том, чтобы соединить эти каталитические системы в единый законченный фотохимический преобразователь. Можно предположить, что со временем этот метод также станет экономически выгодным для широкого применения. Все большее внимание привлекает использование энергии ветра, поскольку в масштабах планеты энергия ветра в 1000 раз превышает гидроэнергию. В Дании в 1997 г. вращались лопасти 4000 электростанций, использующих энергию ветра. Они обеспечивают 3, 7% общего объема потребления электроэнергии. Однако к 2030 г. производство электроэнергии на основе энергии ветра, солнца и биогаза должно увеличиться до 50% общего производства. В итоге планируется вдвое уменьшить выбросы вредных веществ в атмосферу. Разработаны ветроустановки мощностью 500 — 600 кВт. Стоимость производства ветроэнергии сейчас составляет 20 центов за 1 кВт ∙ ч, ее планируется уменьшить до 4, 3 — 4, 4 цента/кВт-ч, что меньше стоимости производства электроэнергии на АЭС и ТЭС (7 центов за 1 кВт ∙ ч). Дания является ведущей страной по применению энергии ветра. рациональные программы освоения энергии ветра развернуты также в Нидерландах, Канаде, ФРГ, Франции, Швеции, КНР и других странах. В США планировалось получить с помощью энергии ветра в 2000 г. 2% всей производимой электроэнергии, в Дании и Нидерландах — 10%. Страны Европейского сообщества планируют довести к 2030 г. долю ветроустановок в производстве электроэнергии до 10%. Опытные работы, проведенные в ФРГ, показали, что современные оптимальные по энергетике ветроэлсктростанции (ВЭС) будут иметь гигантские размеры: на 90-метровых башнях должны вращаться пропеллеры с размахом лопастей 80—100 м, которые приводят в движение роторы генераторов электрической энергии ВЭС. Башни должны отстоять друг от друга на расстоянии трех высот башен, поэтому ВЭС занимают сейчас большие площади. В качестве главного экологического недостатка ВЭС отмечают генерацию ими инфразвукового шума, вызывающего постоянное угнетенное состояние, чувство дискомфорта и беспокойства. Как показывает опыт эксплуатации подобных установок в США, этот шум не выдерживают ни животные, ни птицы. Территории, где размещаются ВЭС большой мощности, оказываются практически непригодными для проживания. В России построено 1500 ветроустановок разной мощности. В нашей стране целесообразно использовать ВЭС в Калининградской области, на побережье Каспийского и Черного морей, на Байкале, Камчатке и Сахалине, побережье Северного Ледовитого океана. Геотермальная энергетика на базе термальных (горячих подземных) вод развивается достаточно интенсивно в США, на Филиппинах, в Мексике, Италии, Японии, где построены геотермальные тепловые электростанции. В России большие ресурсы геотермальной энергии имеются на Камчатке, Сахалине и Курильских островах, меньшие — на Кавказе. Геотермальная энергия может применяться в сельском (обогрев теплиц) и коммунальном (горячее водоснабжение) хозяйствах. К геотермальному водоснабжению подключены некоторые населенные пункты Дагестана, Ингушетии, Краснодарского и Ставропольского краев, Камчатки. Океаны содержат огромный потенциал в виде тепловой энергии температурного градиента по глубине толщи воды (радиации, температур верхнего и нижнего слоев воды), а также энергию океанических течений, морских волн и приливов. В мире наиболее развиты работы по приливным электростанциям (ПЭС). В 1966 г. во Франции построена ПЭС «Ране», вырабатывающая 500 млн кВт ∙ ч электроэнергии в год, в 1968 г. в России – Кислогубская ПЭС на Кольском полуострове, в 1984 г. – ПЭС в Канаде мощностью 20 МВт. Перспективно производство энергии биомассы, получаемой в результате переработки органических отходов. Разработаны технологии производства биогаза и этанола, которые можно использовать как топливо и компост (органические удобрения) из органических отходов животноводческих комплексов, свинокомплексов, птицефабрик, городских сточных вод, бытовых отходов, отходов деревообрабатывающей промышленности. Экономия энергии. Экономические и экологические соображения требуют всемерной и повсеместной экономии энергоресурсов. Такая экономия позволит уменьшить расходы на производство продукции, сохранить энергоресурсы для будущих поколений, уменьшить загрязнение окружающей среды. Внимание к энергосберегающим технологиям производства резко возросло после нефтяного кризиса 1973—1974 гг., когда страны ОПЕК уменьшили экспорт нефти и увеличили цену на нее. В первую очередь пострадали развитые страны Европы, США, Япония. Новые энергосберегающие технологии были разработаны в Японии: с 1973 по 1984 г. валовой продукт Японии увеличился примерно вдвое, а энергозатраты возросли только на 7 - 8%. Количество энергии, необходимой для выплавки стали, снизилось в Японии более чем на 85%. Это достижение связано с внедрением непрерывной разливки, которая в свою очередь стала возможна благодаря использованию огнеупорных кирпичей с керамическими добавками (с повышенной устойчивостью к теплу и трению). Разработан также керамический автомобильный двигатель. В 1985 г. фирма «Тойота» на международной выставке продемонстрировала сверхэкономичный автомобиль с керамическим двигателем, который на 100 км пути тратит менее 2 л бензина. Резко снизили энергоемкость промышленной продукции и другие страны. Если принять энергоемкость в 1970 г. за 100%, то уже в 1983 г. она составляла в США — 61%, Великобритании — 55%, Франции — 61%, при этом производительность труда возросла в США в 1, 33 раза, в Англии — в 1, 63, во Франции — в 1, 47, в Японии — в 1, 56 раза. Приведем несколько примеров энергосберегающих технологий. Более половины всей энергии, производимой в США, потребляют электромоторы. Использование современных электродвигателей с микропроцессорным управлением позволило бы сэкономить 20 % потребляемой электроэнергии. Улучшение теплоизоляции домов (тройные оконные рамы, толщина стен 10—12 см) позволило бы уменьшить примерно на 50% энергию, затрачиваемую на их обогрев. Такие меры принимаются в США, Швеции и других странах. Использование экономичных люминесцентных или натриевых ламп вместо ламп накаливания примерно в 4 раза уменьшает затрачиваемую электрическую энергию (в нашей стране на освещение идет 13% электроэнергии). Огромное количество энергии (60-80%) удалось бы сэкономить в России, если повсеместно перейти от малоэффективного и экологически вредного мартеновского производства стали к разработанной в нашей стране технологии ее непрерывной разливки. Современные типы двигателей автомобилей позволяют снизить потребление топлива в 2-6 раз (до 4, 5-1, 5 л бензина на 100 км), тем самым достигаются большая экономия нефтепродуктов и снижение вредных выбросов в атмосферу. В целом потребление энергии в развитых странах при использовании энергосберегающих технологий может быть снижено в 1, 5 раза (на 30%). Рекомендации по экономии энергии в быту. - Кипятите столько воды, сколько вам нужно, не больше. - После закипания кипятите воду 1—3 мин. - Закрывайте кастрюли и чайники крышками. - Используйте только нужное вам освещение. Остальные светильники выключайте. Уходя из комнаты, гасите свет. - Больше пользуйтесь маломощным местным освещением (настольными лампами, торшерами и т.д.). - Следите за чистотой ламп. Вытирайте на них пыль. - Где возможно, применяйте экономичные люминесцентные или натриевые лампы. - При необходимости использования электроотопительных приборов (электрокамины, рефлекторы и т.п.) ликвидируйте утечки тепла из помещения: заделайте щели в окнах, утеплите двери. Таким образом, экологизация изученных производственных процессов полностью не решена и требует завершения в плане создания безотходных технологий или использования отходов этих производств в качестве вторичного сырья, создания замкнутых производственных циклов Вопросы для самоподготовки 1. Основные принципы организации химико-технологических процессов 2.Нефтехимические производства технология, продукция, экологизация. 3. Производство синтетических волокон, экологические проблемы. 4.Производство серной кислоты и решение проблем очистки выбросов 5. Производство аммиака и азотной кислоты, азотных удобрений, экологизация производственных процессов 6.Производство фосфорной кислоты и фосфорных удобрений и проблемы утилизации выбросов и твердых отходов 7.Производство эластомеров, очистка выбросов. 8. Производство стройматериалов, их экологизация 9. Экологические проблемы биотехнологических производств. 10. Экологизация производственных процессов получения калийных удобрений 11. Энергетические процессы и проблемы экологии Тема 5
|