Задача 2. Дано: плоскость треугольника Σ(Δ АВС)
Дано: плоскость треугольника Σ ( Δ АВС). Требуется: построить плоскость Ω (l∩ m), параллельную заданной и отстоящую от нее на расстоянии 50 мм. Данные для выполнения задачи взять из таблицы Б.2 приложения Б. Указания к выполнению задачи. Задачу выполнить в следующей последовательности: 1) В заданной плоскости Σ выбирать произвольную точку (в том числе вершину треугольника, на рисунке А.3 взята точка А), и из нее восстановить перпендикуляр к плоскости Σ. В связи с тем, что задачи 1 и 2 совмещены на одном чертеже и направление перпендикуляра к плоскости Σ уже выявлено – прямая n(DK), то перпендикуляр через произвольно выбранную точку можно провести как прямую, параллельную перпендикуляру n(DK). На эпюре одноименные проекции параллельных прямых параллельны. 2) Определить методом прямоугольного треугольника натуральную величину произвольного отрезка перпендикуляра, который ограничивают произвольной точкой Р. 3) На натуральной величине произвольного отрезка перпендикуляра найти точку Т, расположенную на заданном расстоянии 50 мм от плоскости, и построить проекции этой точки на проекциях перпендикуляра. 4) Через точку Т построить искомую плоскость, соблюдая условия параллельности плоскостей. На эпюре одноименные проекции пересекающихся прямых должны быть параллельны.
Задача 3 Дано: плоскость треугольника Σ ( Δ АВС) и прямая а(DE). Требуется: через прямую а провести плоскость, перпендикулярную плоскости треугольника Σ, построить линию пересечения этих плоскостей, определить видимость. Данные для выполнения задачи взять из таблицы Б.2 приложения Б. Указания к выполнению задачи. Задачу выполнить в следующей последовательности:: 1) Построить плоскость, перпендикулярную плоскости Σ. Плоскость, перпендикулярная другой плоскости, должна проходить через перпендикуляр к этой плоскости. Искомая плоскость, перпендикулярная плоскости Σ, должна содержать в себе заданную прямую а и перпендикуляр, опущенный из любой точки этой прямой на заданную плоскость Σ, например из точки D. 2) Построить линию пересечения двух плоскостей: заданной плоскости Σ и построенной, перпендикулярной ей плоскости. 3) Определить видимость пересекающихся плоскостей с помощью конкурирующих точек скрещивающихся прямых, принадлежащих этим плоскостям.
Лист 4 Преобразование плоскостей проекций Выполнить две задачи способами преобразования плоскостей проекций. Образец выполнения листа 4 представлен на рисунке А.4 приложения А.
|