Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

А). Механізм альфа – розпаду





Явище альфа – радіоактивності було відкрите при вивченні радіоактивності природних елементів. Природні a - випромінювачі розміщуються в таблиці Менделєєва, починаючи з номера Z ³ 82 (Z=82 має свинець). Оскільки в a - частинці питома енергія зв’язку виявляється більшою, ніж у важких ядрах, a - розпад енергетично є завжди можливим. Наприклад, нуклід урану 238U випромінює a - частинки з періодом піврозпаду 4, 5· 109 років.

Самочинно відбувається ядерна реакція

 

МеВ. (3.2.2.1)

Різниця мас і продуктів розпаду складає 4, 2 МеВ. (Маса материнського ядра перевищує суму мас продуктів розпаду на DМ = 0.0045 а.о.м.).

Правило зміщення для a- розпаду записують так:

 

, (3.2.2.2)

 

де - материнське ядро; - дочірнє ядро; частинка; g-гамма - квант, який звільняється дочірнім ядром при переході у менш збуджений або нормальний стан.

Процес a- розпаду має дві особливості, які були відкриті експериментально.

Між пробігом a-частинки, який може бути мірою її початкової енергії і сталою радіоактивного розпаду l є проста залежність, емпірично встановлена Гейгером і Неттолом ще у 1911 році і відома під назвою закону Гейгера-Неттола:

(3.2.2.3)

де А і В – сталі величини, причому стала В є однаковою для всіх радіоактивних елементів; А – є сталою лише в межах певного радіоактивного ряду.

Із закону Гейгера – Неттола випливає, що чим менш стабільні ядра, тим більша енергія у a-частинок, які при цьому випромінюються.

Наступною особливістю a- розпаду є досить низька енергія a- частинок у момент вилітання із ядра, яка змінюється в межах 4–9 МеВ. Насправді a- частинки у момент вилітання із ядра повинні мати значно більшу енергію, рівну висоті потенціального бар’єра. В реакції потенціальна енергія відштовхування a- частинки на межі ядра торію складає біля 30 МеВ. Відповідно a- частинка після подолання такого бар’єра повинна прискоритися до 30 МеВ. Експериментально ж виявлені a- частинки з енергією 4.2 МеВ.

Чому енергія a- частинок порівняно невисока, та як можна пояснити закон Гейгера-Неттола? Відповідь на ці запитання дає квантова механіка.

Перед початком a- розпаду в багатьох ядрах уже існує по одній a-частинці. Енергія такої частинки . Якби не було потенціального бар’єра, a- частинка вилітала б із ядра з енергією (рис. 3.2.1).

 

На рис. 3.2.1 V0 глибина потенціальної ями; - енергія a- частинок після вилітання із ядра.

Таке враження, що, залишаючи ядра, a- частинки не помічають існування потенціального бар’єра.

Згідно з законами квантової механіки a- частинки проявляють хвильові властивості. При попаданні на стінку потенціального бар’єра вони відбиваються від неї як хвилі. Але не всі a- частинки відбиваються від стінки. Частина із них проникає крізь стінку і залишає ядро з енергією Еa. Ефект проникнення a- частинок крізь потенціальний бар’єр при енергіях значно нижчих його висоти називається тунельним ефектом.

Імовірність проникнення a- частинок крізь потенціальний бар’єр визначається його прозорістю Д. При цьому стала радіоактивного розпаду l, яка визначає імовірність розпаду за одиницю часу, дорівнює добутку “ прозорості “ бар’єра на число зіткнень n a- частинки з внутрішніми стінками бар’єра, тобто

 

l = Д n, (3.2.2.3)

 

, (3.2.2.4)

 

де ma - маса частинки, r – ширина потенціального бар’єра; n – число ударів a- частинки об стінку потенціального бар’єра; Д – прозорість бар’єра у цьому місці.

Мала прозорість Д бар’єра для проникнення крізь нього a- частинки пояснює малу імовірність a- перетворення (мала стала розпаду l) і великий період піврозпаду. Це і є пояснення закону Гейгера – Неттола.

При a- розпаді дочірнє ядро, як правило, перебуває у збудженому стані і енергетично є нестабільним. Перехід з такого збудженого стану в нормальний стан супроводжується випромінюванням g-квантів. Середній час збудженого стану не перевищує 10-13 с.

Дискретний спектр a- випромінювання характеризує енергетичну структуру ядра атома. Пояснити дискретний спектр a- випромінювання можна, виходячи лише із оболонкової моделі будови атомного ядра.

 

б). Закономірності b- розпаду

Бета-розпад ядер радіоактивних елементів почали вивчати незабаром після відкриття радіоактивності. Відомі три види b-розпаду. Серед них b--розпад, b+- розпад і К-захват. Експериментально було встановлено, що b- випромінювання складається з електронів або позитронів і що ці види випромінювання супроводжуються випусканням нейтрино або антинейтрино. Нейтрино – це елементарна частинка з нульовим електричним зарядом і масою спокою рівною нулю. Нейтрино має півцілий спін подібно до електрона. Аналогічні характеристики має антинейтрино.

Правила зміщення для різних видів b- розпаду можна записати так:

а). електронний b- розпад

(3.2.2.5)

б). позитронний b- розпад

 

(3.2.2.6)

 

в). К-захват, або захват ядром електрона з К-оболонки

 

(3.2.2.7)

 

де материнське ядро; дочірнє ядро; електрон; позитрон; антинейтрино; нейтрино.

Для пояснення різних видів β -радіоактивності прийшлось подолати значні труднощі. Перш за все слід було обґрунтувати походження електронів в процесі b-розпаду. Протонно-нейтронна будова ядра усуває вилітання з ядра електронів оскільки їх там немає.

Сучасна теорія b- розпаду ґрунтується на теорії, розробленій Фермі в 1931 р. Фермі у цій теорії стверджує, що протон або нейтрон можуть взаємно перетворюватись в пару частинок позитрон-нейтрино або електрон-антинейтрино. Така пара частинок породжується в ядрі дякуючи слабким взаємодіям подібно тому, як випромінюється фотон за рахунок електромагнетних взаємодій. При цьому слід мати на увазі, що до процесу b-розпаду всередині ядра немає ні електрона ні нейтрино.

Найпростішим прикладом b- розпаду є перетворення вільного нейтрона в протон з періодом піврозпаду 12 хв.:

 

(3.2.2.8)

 

де антинейтрино; електрон.

Такі перетворення нейтронів в протони були виявлені ще у 1950 році при дослідженні потужних нейтронних пучків атомних реакторів.

Процес перетворення нейтрона в протон в ядрах атомів супроводжується виконанням законів збереження електричних зарядів, імпульсу, масових чисел, лептонних зарядів та ін. Крім того, таке перетворення енергетично можливе, тому що маса нейтрона в спокої перевищує масу атома водню, тобто протона і електрона разом узятих. Різниця в масах нейтрона й протона з електроном дорівнює 0.782 МєВ. За рахунок цієї енергії може відбуватись самочинне перетворення нейтрона в протон.

При позитронному розпаді, тобто процесі перетворення одного із протонів ядра в нейтрон, недостаток енергії для такого перетворення доповнюється ядром

(3.2.2.9)

 

де нейтрино, відрізняється від антинейтрино лише знаком лептонного заряду (для нейтрино –1, а для антинейтрино +1).

Випадків перетворення вільного протона в нейтрон з випромінюванням нейтрино й позитрона поки що не спостерігалось. Такі перетворення заборонені законом збереження маси (баріонного заряду).

Третій вид b- радіоактивності – електронне захоплення було відкрите ще у 1937 році американськими фізиками. Цей вид радіоактивності полягає в тому, що ядром можуть бути захоплені електрони з електронної оболонки власного атома. При цьому це можуть бути K-, L-, M- електрони. Те, що такий процес можливий, пояснюється в квантовій механіці. З квантової точки зору електронних орбіт в атомах не існує через хвильові властивості електронів. Перебування електронів на оболонках має імовірнісний характер. Перебування електронів біля ядра і навіть у ядрі законами квантової механіки не забороняється. Тому в тих випадках, коли материнське ядро дещо перенасичене протонами, можливий електронний захват згідно з схемою:

 

(3.2.2.10)

 

Електронний захват завжди супроводжується рентгенівським випромінюванням.

Енергетичний спектр b- випромінювання є завжди суцільним з різкою межею для деякої максимальної енергії Еmax (рис.3.2.2.).

Гіпотеза про те, що b- частинки народжуються лише певних енергій, а потім частину її втрачають при вилітанні з ядер, не підтверджується експериментально. Все пояснюється дуже просто: це перш за все процес народження двох частинок – електрона й антинейтрино або позитрона й нейтрино. У випадку, коли електрон має енергію Еmax, антинейтрино має енергію рівну нулю. Між двома частинками в процесі радіоактивного розпаду енергія розподіляється довільно.

 







Дата добавления: 2014-12-06; просмотров: 1112. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия