РАЗРЕШИМАЯ ТЕОРИЯ
— теория, для которой существует эффективная процедура (алгоритм), позволяющая о каждом утверждении, сформулированном в терминах этой теории, решить, выводимо оно в теории или нет (см.: Разрешения проблема). Р. т. являются, напр., элементарная алгебра Буля, теория сложения целых чисел и некоторые иные простые математические теории. Неразрешима арифметика целых чисел (т. е. теория четырех главных арифметических действий над целыми числами) и каждая дедуктивная теория, содержащая арифметику. РАЦИОНАЛЬНОСТЬ (от лат. ratio - разум) - относящееся к разуму, обоснованность разумом, доступное разумному пониманию, в противоположность иррациональности как чему-то неразумному, недоступному разумному пониманию. В методологии научного познания Р. понимается двояко. Чаще всего Р. истолковывается как соответствие законам разума — законам логики, методологическим нормам и правилам. То, что соответствует логико-методологическим стандартам, — Р., то, что нарушает эти стандарты, — нерационально или даже иррационально. Иногда под Р. понимают целесообразность. То, что способствует достижению цели, — Р., то, что этому препятствует, — нерациональность. До недавних пор считалось, что образцом Р. деятельности является наука и деятельность ученого. Все остальные сферы человеческой деятельности Р. лишь в той мере, в какой они опираются на научные знания и методы. В настоящее время признано, что каждая область деятельности имеет свои стандарты Р., которые далеко не всегда совпадают с научными, поэтому можно говорить о Р. в искусстве, в политике, в управлении и т. д. Поэзия столь же Р., как и наука, но в ней иные стандарты Р. РЕКУРСИВНОЕ ОПРЕДЕЛЕНИЕ (от лат. recurso - возвращаюсь) — метод определения арифметической функции φ (у) или предиката Р (у) через область значений этой функции или предиката. Примером Р. о. может быть определение функции сложения: а + 0 = а, (1) а + b '= (а+ b) ' (2) В равенстве (1) говорится, что некоторое фиксированное число а (см.: Параметр) при прибавлении к нему нуля дает число а. В равенстве (2) говорится., что если к некоторому фиксированному числу а добавить число, следующее за некоторым фиксированным числом b (т. е. b ', или число b +1), то эта сумма будет равна числу, следующему за суммой чисел а+ b. Напр., если к числу 2 добавить число, следующее за числом 3, т. е. число 4, то этот же результат можно получить, сложив 2 и 3 и перейдя от полученной суммы к следующему за ней числу. Значение левой и правой частей равенства в данном случае равно 6. Такого рода функции позволяют вычислять значение суммы самых различных чисел. При этом осуществляется переход от некоторого числа п к следующему за ним (к п', или п +1), т. е. строится натуральный ряд чисел начиная с нуля. Допустим, нам требуется сложить 5 и 2. Тогда число 2 представим как следующее за 1, т. е. как 1'. Итак, имеем:
Теперь будем возвращаться от равенства 5+0=5 (в) к равенству (б), а затем к равенству (а). Раз 5+0=5, то (5+0)'=6 (см. равенство (б)). Раз 5+1 равно 6, то (5+1)'=7 (см. равенство (а)). Итак, 5+2=7. В основе вычислимости арифметических функций, определяемых рекурсивно, лежит класс некоторых других функций, считающихся заданными с самого начала, которые называются примитивно-рекурсивными.
|