Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

РАЗРЕШИМАЯ ТЕОРИЯ





— теория, для которой существует эффективная процедура (алгоритм), позволяющая о каждом утверждении, сформулированном в терминах этой теории, решить, выводимо оно в теории или нет (см.: Разрешения проблема).

Р. т. являются, напр., элементарная алгебра Буля, теория сложения целых чисел и некоторые иные простые математические теории. Неразрешима арифметика целых чисел (т. е. теория четырех главных арифметических действий над целыми числами) и каждая дедуктивная теория, содержащая арифметику.

РАЦИОНАЛЬНОСТЬ (от лат. ratio - разум)

- относящееся к разуму, обоснованность разумом, доступное разумному пониманию, в противоположность иррациональности как чему-то неразумному, недоступному разумному пониманию.

В методологии научного познания Р. понимается двояко. Чаще всего Р. истолковывается как соответствие законам разума — законам логики, методологическим нормам и правилам. То, что соответствует логико-методологическим стандартам, — Р., то, что нарушает эти стандарты, — нерационально или даже иррационально. Иногда под Р. понимают целесообразность. То, что способствует достижению цели, — Р., то, что этому препятствует, — нерациональность.

До недавних пор считалось, что образцом Р. деятельности является наука и деятельность ученого. Все остальные сферы человеческой деятельности Р. лишь в той мере, в какой они опираются на научные знания и методы. В настоящее время признано, что каждая область деятельности имеет свои стандарты Р., которые далеко не всегда совпадают с научными, поэтому можно говорить о Р. в искусстве, в политике, в управлении и т. д. Поэзия столь же Р., как и наука, но в ней иные стандарты Р.

РЕКУРСИВНОЕ ОПРЕДЕЛЕНИЕ (от лат. recurso - возвращаюсь)

— метод определения арифметической функции φ (у) или предиката Р (у) через область значений этой функции или предиката. Примером Р. о. может быть определение функции сложения:

а + 0 = а, (1)

а + b '= (а+ b) ' (2)

В равенстве (1) говорится, что некоторое фиксированное число а (см.: Параметр) при прибавлении к нему нуля дает число а. В равенстве (2) говорится., что если к некоторому фиксированному числу а добавить число, следующее за некоторым фиксированным числом b (т. е. b ', или число b +1), то эта сумма будет равна числу, следующему за суммой чисел а+ b. Напр., если к числу 2 добавить число, следующее за числом 3, т. е. число 4, то этот же результат можно получить, сложив 2 и 3 и перейдя от полученной суммы к следующему за ней числу. Значение левой и правой частей равенства в данном случае равно 6. Такого рода функции позволяют вычислять значение суммы самых различных чисел. При этом осуществляется переход от некоторого числа п к следующему за ним (к п', или п +1), т. е. строится натуральный ряд чисел начиная с нуля. Допустим, нам требуется сложить 5 и 2. Тогда число 2 представим как следующее за 1, т. е. как 1'. Итак, имеем:

а)5+2=5+1'=(5+1)' по равенству (2), б)5+1=5+0'=(5 + 0)' по равенству (2),
в) 5+0=5 - по равенству (1).


Теперь будем возвращаться от равенства 5+0=5 (в) к равенству (б), а затем к равенству (а). Раз 5+0=5, то (5+0)'=6 (см. равенство (б)). Раз 5+1 равно 6, то (5+1)'=7 (см. равенство (а)). Итак, 5+2=7. В основе вычислимости арифметических функций, определяемых рекурсивно, лежит класс некоторых других функций, считающихся заданными с самого начала, которые называются примитивно-рекурсивными.







Дата добавления: 2014-10-22; просмотров: 522. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия