Факторы, обусловливающие газообразующую способность муки
Газообразующая способность муки зависит от состояния ее углеводно-амилазного комплекса и в том числе содержания в ней собственных сахаров и ее сахарообразующей способности. Собственные сахара муки. Количество собственных сахаров в муке колеблется в пределах 1, 0 до 2, 3 % в зависимости от: сорта муки (выхода) и состава зерна (сортовых особенностей). Установлено, что распределение сахаров в зерне неравномерно. Содержание сахаров в эндосперме зерна значительно ниже, чем в зародыше, оболочках и алейроновом слое. В связи с этим, содержание сахаров в муке тем выше, чем больше выход муки (т.е. чем ниже сорт). В обойной муке содержание сахаров практически равно содержанию их в зерне. Агротехнические и погодные условия влияют на количество сахаров в одном и том же сорте муки. Проросшее зерно может содержать собственных сахаров 2 - 2, 2%. На с.в. В муке содержатся: а) непосредственно редуцирующие моносахара (глюкоза, фруктоза) и дисахарид мальтоза; б) гидролизованные сахара, то есть сахара, которые становятся редуцирующими после гидролиза сахарозы, арабинозы. Содержание отдельных сахаров в зерне пшеницы и в муке из неё лежит в следующих пределах (в % на сухое вещество): глюкоза 0, 01–0, 09, фруктоза 0, 02–0, 09, мальтоза 0, 06–0, 15, сахароза 0, 19–0, 57, общее количество раффинозы, мелибиозы и глюкофруктозана (левозина) колеблется примерно от 0, 67 до 1, 26 % на с.в. Многочисленными исследованиями показано, что в газообразовании, происходящем при брожении теста, участвуют как собственные сахара муки, так и сахара, образующиеся в результате амилолиза крахмала. Однако собственные сахара муки играют существенную роль только в самом начале брожения теста. Успех же технологического процесса приготовления хлеба обусловливается газообразованием в конце брожения теста, во время расстойки и в начальной фазе выпечки. Таким образом, газообразующая способность муки, хотя и зависит от содержания в ней собственных сахаров, в основном все же определяется сахарообразующей способностью муки. Сахарообразующая способность муки. Сахарообразующая способность муки – это способность приготовленной из неё водно-мучной смеси (из 10 г муки и 50 мл воды) образовывать при определенной температуре (27 0С) за определенный период времени (1 час) то или иное количество мальтозы (мг). Сахарообразующая способность муки связана с действием содержащихся в ней амилолитических ферментов на крахмал, в результате гидролиза которого в тесте образуются сахара (мальтоза и др.) Сахарообразующая способность муки зависит поэтому от содержания в ней амилолитических ферментов и податливости крахмала их действию. Таким образом газообразующая способность муки обусловливается ее углеводно-амилазным комплексом. В муке из нормального непроросшего зерна пшеницы содержится практически только в-амилаза. -амилаза при действии на крахмал образует в основном мальтозу и в меньшей степени высокомолекулярные декстрины. В результате действия -амилазы образуются в качестве основного продукта гидролиза крахмала низкомолекулярные декстрины и незначительное количество мальтозы. Исследованиями установлено, что -амилаза помимо декстринов и мальтозы, образует глюкозу и другие низкомолекулярные сахариды (амилотриозы, амилотетраозы, амилопентаозы). В муке из нормального непроросшего зерна пшеницы практически содержится только -амилаза. При прорастании зерна активизируется и -амилаза в 10, 100 и даже в 1000 раз. Совместное действие амилаз повышает сахарообразующую способность муки. Это обьясняется тем, что а-амилаза разлагает крахмал, в основном, на низкомолекулярные декстрины, очень легко переводимые избыточным количеством в-амилазы муки в мальтозу. Именно поэтому мука из проросшего зерна характеризуется не только повышенным содержанием активной а-амилазы, но и резко повышенной сахарообразующей способностью. Привести рисунок 2. α - и β -амилазы различаются по своему отношению к температуре и к кислотности среды. α -амилаза по сравнению с β -амилазой имеет оптимум действия и инактивируется при более высокой температуре. В то же время β -амилаза более стойка к повышению кислотности среды. Оптимальная для действия амилаз реакция среды в свою очередь неодинакова при различной температуре действия амилаз в данной среде. Оптимальная температура действия α –амилазы в тесте из пшеничной муки I сорта, приготовленного на прессованных дрожжах (рН 5, 9) - 70–74 0С, β - амилазы – 62–64 0С. Полная инактивация β -амилазы при этом происходила при 82–84 0С. α –амилаза в этих условиях способна сохранять известную активность при температуре, достигающей 98 0С. Даже в хлебе, выпеченном из этого теста, α –амилаза в центре мякиша (где температура не превышает 98 0С) сохраняла известную активность в первые 2 часа после выемки из печи. · Существенно влияние фактора кислотности среды на температуру инактивации β - и α –амилазы. β -амилаза в процессе выпечки ржаного хлеба инактивировалась полностью при кислотности теста 10-11, 4 град. (рН 4, 3-4, 6) и температуре 60 0С, а при кислотности теста 4, 6-6, 3 град. (рН 4, 7-4, 9) – при температуре 73–78 0С. α -амилаза была полностью инактивирована при кислотности теста 10, 6-11, 6 град. (рН 4, 3) и температуре 71 0С. Когда кислотность теста была равна 4, 4 град. (рН 4, 9) α –амилаза в центре мякиша хлеба сохраняла свою активность до конца выпечки, т.е. при температуре 97–98 0С. Как видно, повышение кислотности резко снижает температуру инактивации α –амилазы, что нашло широкое применение в технологии приготовления теста. Количество α –амилазы незначительно, но на ранних стадиях созревания она очень активна, при созревании её активность падает, а при прорастании зерна повышается.
Рисунок 2 – Положительного влияния α –амилазы на газообразование . Наличие α –амилаз в муке отрицательно сказывается на качестве хлеба. Особенно отрицательно влияние во время выпечки: Температура внутри теста повышается, β -амилаза инактивизируется с повышением температуры, α –амилаза активна на протяжении всего процесса выпечки, она гидролизует крахмал до декстринов, которые придают хлебу липкость, заминаемость. В процессе выпечки белки коагулируют, высвобождается влага, которая удерживается крахмалом, а при наличии α –амилаз крахмал гидролизуется и влага не связывается, мякиш получается влажным на ощупь. Хлеб из такой муки – дефектный. . Для действия амилолитических ферментов большое значение имеет состояние (субстрата)крахмала, его податливость, величина зёрен крахмала, степень повреждения их при помоле., т.е. от удельной свободной поверхности зёрен и частиц зёрен крахмала, на которую может действовать β -амилаза. Чем мельче частицы муки и зёрна крахмала, чем больше эти зёрна разрушены или повреждены, тем больше атакуемость этого субстрата β -амилазой.. Чем больше разрушен крахмал, тем больше сахарообразующая способность муки. Установлено, что при действии β -амилазы в сравнимых условиях на разные крахмальные субстраты и различные по крупности частицы пшеничного крахмала образуется различное количество мальтозы.
Таблица 7 – Влияние размера крахмальных зёрен и субстрата на количество образующейся мальтозы.
Степень механического повреждения зёрен крахмала при помолах пшеницы может существенно различаться и влиять на хлебопекарные свойства муки. С этой точки зрения оптимальна пшеничная мука с относительно невысокой степенью повреждения зёрен крахмала(15 %). Размеры зёрен крахмала в пшеничной муке различны. Доля мелких зёрен крахмала (размером менее 7, 5 мкм) по их числу равна 81, 2 %, а по массе – 4, 1 %; средних (размером 7, 5-15 мкм) по их числу равна 6, 0 %, а по массе – 2, 9 %; крупных же (размером 15–30 мкм) соответственно – 12, 8 и 93 %.Если атакуемость крупных зерен крахмала принять за 1, то атакуемость средних будет в 2, мелких –в 5, а измельченных – в 15 раз больше. У мелких зёрен значительно выше такие показатели, как кристалличность и плотность, температура начала и завершения процесса клейстеризации; водосвязывающая способность и атакуемость амилолитическими ферментами, но ниже, чем у крупных растворимость и набухаемость. Сахарообразующая способность зависит и от белково - протеиназного комплекса муки. (чем сильнее клейковина, тем труднее ферментам вступать во взаимодействие с крахмальными зернами При усилении протеолиза наблюдается повышение сахарообразования в тесте – амилазы высвобождаются из белка под действием протеолитических ферментов. Установлено, что в молекуле амилаз имеются активные химические группы: в β -амилазе - это сульфгидрильные группы - SH окисление этих групп приводит к снижению активности этих ферментов. Активность α -амилазы обусловлена ее аминными группами NH2. Суммируя изложенное, следует отметить, что сахарообразующая способность муки из нормального непроросшего зерна пшеницы ввиду большого содержания β -амилазы в основном обусловливается атакуемостью её крахмала. Чем мельче частицы муки и зерна крахмала и чем в большей мере они повреждены при размоле зерна, тем выше сахарообразующая способность муки. В муке же из проросшего зерна пшеницы дополнительное и почти решающее значение имеет содержание активной a-амилазы. Определение газообразующей способности муки. Показателем газообразующей способности муки принято считать количество см3 углекислого газа, выделившегося за 5 часов брожения теста из 100 г исследуемой муки, 60 мл воды и 10 г прессованных дрожжей. Целесообразно при проведении определения фиксировать и количество газа, выделившегося после каждого часа брожения, что даёт возможность судить и о кинетике газообразования. Для определения газообразующей способности применяют различные приборы, которые могут быть отнесены к двум группам: приборы, измеряющие количество выделившегося углекислого газа (СО2) волюмометрически - по его объему, и приборы, в которых количество выделившегося газа определяется манометрически – по создаваемому газом давлению (если объём газа постоянен). Технологическое значение газообразующей способности муки. Газообразующая способность муки имеет большое технологическое значение при выработке хлебобулочных изделий, рецептура которых не предусматривает внесение сахара в тесто. Зная газообразующую способность перерабатываемой муки можно предвидеть интенсивность брожения теста из этой муки, ход расстойки, её длительность и с учётом количества и качества клейковины в муке – разрыхленность и объём хлеба. Газообразующая способность муки влияет на окраску корки пшеничного хлеба. Недостаточная газообразующая способность муки не обеспечит в конце брожения теста такого содержания в нём сахаров, которое было бы достаточно для нормального брожения теста при расстойке и в первый период нахождения выпекаемой тестовой заготовки в печи. Хлеб из такого теста будет пониженного объема и плохо разрыхлен. Цвет корки пшеничного хлеба также в значительной мере обусловлен количеством оставшихся в тесте несброженных сахаров, вступающих в процессе выпечки в реакцию меланоидинообразования. Если мука имеет низкую газообразующую способность - «крепкая на жар» (как правило, это мука в/с и I сорта), то необходимо предусмотреть ее переработку в изделия, в рецептуру которых входит сахар. В противном случае расстойка будет идти долго, хлеб получится обжимистым, с бледной коркой, так как все сахара могут быть сброжены до посадки в печь. Поскольку β -амилаза действует на клейстеризованный крахмал в 370 раз быстрее, чем на крахмальные зёрна, следует 3 % муки заварить, тогда сахарообразующая способность резко повысится и получится хлеб. нормального качества. Чем выше выход муки, тем больше в ней содержание собственных сахаров и ферментативная активность, а вследствие этого и средний уровень ее газообразующей способности. Резко повышенная, как газообразующая способность, так и сахарообразующая способность муки может быть обусловлена пророслостью зерна, из которого смолота мука. Это должны учитывать производственные лаборатории, производящие анализ муки. Для оценки состояния углеводно-амилазного комплекса муки используются методы определения автолитической активности и числа падения. Сущность метода определения АА /Гост 27495-87/ заключается в определении с помощью прецизионного рефпактометра количества водорастворимых веществ, образующихся при прогревании водно-мучной болтушки. (не более 30% на с.в.). Метод числа падения (ГОСТ 27676-88) характеризует активность а-амилазы по степени разжижения клейстеризованной в кипящей водяной бане водно-мучной суспензии, выражаемой в продолжительности погружения калиброванной по массе мешалки. Показатели ЧП по ГОСТ 52189-03 для сортов пшеничной муки: экстра, высший, крупчатка, 1 – 185 с, 2сорта и обойная мука – 160 с.. Для определения амилолитической активности (ЧП) используется амилотест.
|