Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Приблизительность моделей





Действительность отображается моделью грубо или приблизительно, поскольку м одель – это абстракция. Она по определению всегда является лишь относительным, приближенным подобием системы-оригинала и в информационном отношении принципиально беднее последней. Это ее фундаментальное свойство.

Несущественные свойства отбрасываются, и сложная исходная задача сводится к идеализированной задаче, поддающейся математическому анализу.

С подобной абстракцией очень часто приходится встречаться. Например, в механике, при описании некоторых процессов зачастую не учитывается сила трения, либо принимается, что все тела абсолютно твердые, жидкости не имеют вязкости и тому подобное. Все это идеализированные модели реально протекающих процессов. Они являются абстракциями и не существуют в реальной действительности.

Рассмотрим конкретный пример. Построим математическую модель движения груза под действием на него пружины с целью оценки параметров колебательного процесса (Рис8).

Пусть груз массой m колеблется на горизонтальной плоскости под действием пружины нулевой массы с жесткостью к. Предположим, что противодействующие силы (в частности, сила трения) пренебрежимо малы и нас интересуют характер и частота колебаний.

Рис.6. Схема колебательной системы

Для решения направим ось Х вдоль линии колебаний и выберем на ней начало отсчета, отвечающее равновесному положению груза, при котором пружина находится в нейтральном состоянии, т. е. ни сжата, ни растянута. Тогда, если положению груза соответствует координата Х, то на него действует сила -кХ. Применяя второй закон Ньютона (F=ma), получим дифференциальное уравнение

(1)

с общим решением .

Здесь С1 и С2 –константы, определяемые из начальных условий. Таким образом, груз совершает гармонические колебания с центром в точке Х=0, с частотой

.

Соответственно период колебаний равен

Это уравнение является математической моделью рассматриваемых свойств системы.

Но эта модель не точна. В действительности, в реальной системе колебания затухают. Однако ни каких сведений об этом мы получить из модели не можем. Модель не учитывает силу трения.







Дата добавления: 2014-12-06; просмотров: 670. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия