Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Востребованность моделей





Несколько слов о востребованности моделей. Их создание нужно не само по себе, а обусловлено необходимостью решения практических задач. Иногда решение лежит на поверхности, но если задача не востребована практикой, то и нет модели (открытия обычно рождаются тогда, когда они вызваны необходимостью, когда человечество не может сделать без них свой очередной шаг на пути прогресса).

Хороший исторический пример - модель полета ракеты [15]. Дифференциальное уравнение, реализующее эту модель, принадлежит к самым простым во всей математике; оно могло быть исследовано уже вскоре после открытия Ньютоном производных – могло быть решено, скажем, в 1670 году. Однако эта модель в то время не была востребована – никому не приходило в голову применять только что разработанный математический аппарат к полету запускаемых фейерверков.

И только 230 лет спустя, в 1903 году Циолковский опубликовал первое математическое исследование ракетного движения. Рассмотрим, как была выведена известная формула Циолковского. В качестве исходного для построения модели Циолковский рассматривал закон сохранения количества движения (следствие второго закона Ньютона). Если система состоит из нескольких частей и движется без воздействия внешних сил, то какие бы взаимные перемещения частей ни осуществлялись, сумма количеств движения всех частей остается неизменной.

Применительно к ракете, этот закон означает, что прирост количества движения ракеты равен количеству движения уходящих газов, образующихся в результате горения. Модель строится исходя из рассмотрения выхлопа одной ничтожно малой порции газов, имеющей массу dm, вылетающей из сопла со скоростью V0 – она называется скоростью истечения газов относительно ракеты.

Составим уравнение, в левой части которого будет стоять увеличение количества движения ракеты массой m (она после выхлопа приобретает увеличение скорости dv), а в правой – количество движения выброшенных газов (знак минус перед dm ставится оттого, что масса m уменьшается).

, или .

Решение этого дифференциального уравнения имеет вид:

,

где m0 – начальная масса ракеты, определяемая из начального условия при старте v=0.

Таким образом, скорость ракеты выражается формулой:

.

Это формула Циолковского. Данная модель объясняет, как нарастает скорость ракеты по мере сжигания топлива. Характер процесса нагляднее всего уяснить с помощью графика (Рис8), показывающего изменение скорости с уменьшением массы ракеты.

1 2 3 4 m0/m
v V0


Рис.8. Изменение скорости ракеты

Приведенная модель достаточно проста, поскольку не учитывает сопротивление воздуха, земное тяготение. Учет их резко усложняет модель и анализ результатов решения. Решение лежит на поверхности, но оно возникло только тогда, когда появилась проблема. Точно так при решении практических задач возникают открытия. А решение может оказаться очень простым.

Можно утверждать, что моделирование используется в любой сфере человеческой деятельности и при любом уровне значимости решаемых проблем: от решения конкретных инженерных задач до проведения научных исследований.

Моделирование стало применяться еще в глубокой древности и постепенно, с развитием цивилизации, захватывало практически все области жизнедеятельности человека.

Люди начали пользоваться, например, математическими моделями еще до осознания математики как самостоятельной науки – достаточно вспомнить исчисление площадей в Древнем Египте. Как только начала развиваться цивилизация, так человек решая практические задачи начал использовать модели объектов (планировка городов, строительство зданий, и т.п.).

Человек, просто не осознавая, в своей жизни все время создает и использует всевозможные модели: модели окружающего пространства, модели поведения других людей, модели физических и технических объектов и т.д., с тем, чтобы получить практическую пользу. Например, переходя дорогу, мы моделируем движение приближающейся машины, чтобы предсказать, успеем ли безопасно перейти, и выбрать правильное решение.

В настоящее время нельзя назвать область человеческой деятельности, в которой в той или иной степени не использовались бы методы моделирования.

 


ТЕМА 3
МНОГООБРАЗИЕ МОДЕЛЕЙ СИСТЕМ







Дата добавления: 2014-12-06; просмотров: 653. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия