Язык логики
Необходимая связь мышления и языка, при которой язык выступает материальной оболочкой мыслей, означает, что выявление логических структур возможно лишь путем анализа языковых выражений. Подобно тому, как к ядру ореха можно добраться лишь вскрыв его скорлупу, так и логические формы могут быть выявлены лишь путем анализа языка. В целях овладения логико-языковым анализом рассмотрим кратко структуру и функции языка, соотношение логических и грамматических категорий, а также принципы построения особого языка логики. Язык — это знаковая информационная система, выполняющая функцию формирования, хранения и передачи информации в процессе познания действительности и общения между людьми. Основным строительным материалом при конструировании языка выступают используемые в нем знаки. Знак — это любой чувственно воспринимаемый (зрительно, на слух или иным способом) предмет, выступающий представителем другого предмета. Среди различных знаков выделим два вида: знаки-образы и знаки-символы. Знаки-образы имеют определенное сходство с обозначаемыми предметами. Примеры таких знаков: копии документов; дактилоскопические отпечатки пальцев; фотоснимки; некоторые дорожные знаки с изображением детей, пешеходов и других объектов. Знаки-символы не имеют сходства с обозначаемыми предметами. Например: нотные знаки; знаки азбуки Морзе; буквы в алфавитах национальных языков. Множество исходных знаков языка составляет его алфавит. Комплексное изучение языка осуществляется общей теорией знаковых систем — семиотикой, которая анализирует язык в трех аспектах: синтаксическом, семантическом и прагматическом. Синтаксис — это раздел семиотики, изучающий структуру языка: способы образования, преобразования и связи между знаками. Семантика занимается проблемой интерпретации, т.е. анализом отношений между знаками и обозначаемыми объектами. Прагматика анализирует коммуникативную функцию языка — эмоциональные, психологические, эстетические, экономические и другие отношения носителя языка к самому языку. По происхождению языки бывают естественные и искусственные, Естественные языки — это исторически сложившиеся в обществе звуковые (речь), а затем и графические (письмо) информационные знаковые системы. Они возникли для закрепления и передачи накопленной информации в процессе общения между людьми. Естественные языки выступают носителями многовековой культуры народов. Они отличаются богатыми выразительными возможностями и универсальным охватом самых различных областей жизни. Искусственные языки — это вспомогательные знаковые системы, создаваемые на базе естественных языков для точной и экономной передачи научной и другой информации. Они конструируются с помощью естественного языка или ранее построенного искусственного языка. Язык, выступающий средством построения или изучения другого языка, называют метаязыком, основной — языком-объектом. Метаязык, как правило, обладает более богатыми по сравнению с языком-объектом выразительными возможностями. Искусственные языки различной степени строгости широко используются в современной науке и технике: химии, математике, теоретической физике, вычислительной технике, кибернетике, связи, стенографии. Особую группу составляют смешанные языки, базой в которых выступает естественный (национальный) язык, дополняемый символикой и условными обозначениями, относящимися к конкретной предметной области. К этой группе можно отнести язык, условно называемый «юридическим языком», или «языком права». Он строится на базе естественного (в нашем случае русского) языка, а также включает множество правовых понятий и дефиниций, правовых презумпций и допущений, правил доказательства и опровержения. Исходной клеточкой этого языка выступают нормы права, объединяемые в сложные нормативно-правовые системы. Искусственные языки успешно используются и логикой для точного теоретического и практического анализа мыслительных структур. Один из таких языков — язык логики высказываний. Он применяется в логической системе, называемой исчислением высказываний, которая анализирует рассуждения, опираясь на истинностные характеристики логических связок и отвлекаясь от внутренней структуры суждений. Принципы построения этого языка будут изложены в главе о дедуктивных умозаключениях. Второй язык — это язык логики предикатов. Он применяется в логической системе, называемой исчислением предикатов, которая при анализе рассуждений учитывает не только истинностные характеристики логических связок, но и внутреннюю структуру суждений. Рассмотрим кратко состав и структуру этого языка, отдельные элементы которого будут использованы в процессе содержательного изложения курса. Предназначенный для логического анализа рассуждений, язык логики предикатов структурно отражает и точно следует за смысловыми характеристиками естественного языка. Основной смысловой (семантической) категорией языка логики предикатов является понятие имени. Имя — это имеющее определенный смысл языковое выражение в виде отдельного слова или словосочетания, обозначающее или именующее какой-либо внеязыковой объект. Имя как языковая категория имеет таким образом две обязательные характеристики или значения: предметное значение и смысловое значение. Предметное значение (денотат) имени — это один или множество каких-либо объектов, которые этим именем обозначаются. Например, денотатом имени «дом» в русском языке будет все многообразие сооружений, которые этим именем обозначаются: деревянные, кирпичные, каменные; одноэтажные и многоэтажные и т.д. Смысловое значение (смысл, или концепт) имени — это информация о предметах, т.е. присущие им свойства, с помощью которых выделяют множество предметов. В приведенном примере смыслом слова «дом» будут следующие характеристики любого дома: 1) это сооружение (здание), 2) построено человеком, 3) предназначено для жилья. Отношение между именем, смыслом и денотатом (объектом) можно представить следующей семантической схемой: Это значит, что имя денотирует, т.е. обозначает объекты только через смысл, а не непосредственно. Языковое выражение, не имеющее смысла, не может быть именем, поскольку оно не осмысленно, а значит и не опредмечено, т.е. не имеет денотата. Типы имен языка логики предикатов, определяемые спецификой объектов именования и представляющие собою его основные семантические категории, это имена: 1) предметов, 2) признаков и 3) предложений. Имена предметов обозначают единичные предметы, явления, события или их множества. Объектом исследования в этом случае могут быть как материальные (самолет, молния, сосна), так и идеальные (воля, правоспособность, мечта) предметы. По составу различают имена простые, которые не включают других имен (государство), и сложные, включающие другие имена (спутник Земли). По денотату имена бывают единичные и общие. Единичное имя обозначает один объект и бывает представлено в языке именем собственным (Аристотель) или дается описательно (самая большая река в Европе). Общее имя обозначает множество, состоящее более чем из одного объекта; в языке оно бывает представлено нарицательным именем (закон) либо дается описательно (большой деревянный дом). Имена признаков — качеств, свойств или отношений — называются предикаторами. В предложении они обычно выполняют роль сказуемого (например, «быть синим», «бегать», «дарить», «любить» и т.д.). Число имен предметов, к которым относится предикатор, называется его местностью. Предикаторы, выражающие свойства, присущие отдельным предметам, называются одноместными (например, «небо синее»). Предикаторы, выражающие отношения между двумя и более предметами, называются многоместными. Например, предикатор «любить» относится к двухместным («Мария любит Петра»), а предикатор «дарить» — к трехместным («Отец дарит книгу сыну»). Предложения — это имена для выражений языка, в которых нечто утверждается или отрицается. По своему логическому значению они выражают истину либо ложь. Алфавит языка логики предикатов включает следующие виды знаков (символов): 1) а, b, с,... — символы для единичных (собственных или описательных) имен предметов; их называют предметными постоянными, или константами; 2) х, у, z,... — символы общих имен предметов, принимающие значения в той или другой области; их называют предметными переменными; 3) Р1, Q1, R1,... — символы для предикатов, индексы над которыми выражают их местность; их называют предикатными переменными; 4) р, q, r,... — символы для высказываний, которые называют высказывательными, или пропозициональными переменными (от латинского propositio — «высказывание»); 5) ", $ — символы для количественной характеристики высказываний; их называют кванторами: " — квантор общности; он символизирует выражения — все, каждый, всякий, всегда и т.п.; $ — квантор существования; он символизирует выражения — некоторый, иногда, бывает, встречается, существует и т.п.; 6) логические связки: Ù — конъюнкция (союз «и»); v — дизъюнкция (союз «или»); ® — импликация (союз «если..., то...»); º — эквиваленция, или двойная импликация (союз «если и только если..., то...»); ù — отрицание («неверно, что...»). Технические знаки языка: (,) — левая и правая скобки.
Других знаков данный алфавит не включает. Допустимые, т.е. имеющие смысл в языке логики предикатов выражения называются правильно построенными формулами — ППФ. Понятие ППФ вводится следующими определениями: 1. Всякая пропозициональная переменная — р, q, r,... есть ППФ. 2. Всякая предикатная переменная, взятая с последовательностью предметных переменных или констант, число которых соответствует ее местности, является ППФ: А1 (х), А2 (х, у), А3(х, у, z ), Аn (х, у,..., n), где А1, А2, А3,..., Аn — знаки метаязыка для предикаторов. 3. Для всякой формулы с предметными переменными, в которой любая из переменных связывается квантором, выражения " хА (х) и $ хА(х) также будут ППФ. 4. Если А и В — формулы (А и В — знаки метаязыка для выражения схем формул), то выражения: А Ù В, Av B, А ®В, A º В, ù А, ù В также являются формулами. 5. Любые иные выражения, помимо предусмотренных в п. 1—4, не являются ППФ данного языка. С помощью приведенного логического языка строится формализованная логическая система, называемая исчислением предикатов. Элементы языка логики предикатов будут использованы в дальнейшем изложении для анализа отдельных фрагментов естественного языка. § 5. История логики (краткий очерк) Как самостоятельная наука логика сложилась более двух тысяч лет назад, в IV в. до н.э. Ее основателем является древнегреческий философ Аристотель (348—322 гг. до н.э.). В своих логических трудах, получивших общее название «Органон» (греч. «орудия познания»), Аристотель сформулировал основные законы мышления: тождества, противоречия и исключенного третьего, описал важнейшие логические операции, разработал теорию понятия и суждения, обстоятельно исследовал дедуктивное (силлогистическое) умозаключение. Аристотелевское учение о силлогизме составило основу одного из направлений современной математической логики — логики предикатов.Важным этапом в развитии учения Аристотеля явилась логика античных стоиков (Зенон, Хрисипп и др.), дополнившая аристотелевскую теорию силлогизма описанием сложных умозаключений. Логика стоиков — основа другого направления математической логики — логики высказываний. Среди других античных мыслителей, развивавших и комментирующих логическое учение Аристотеля, следует назвать Галена, именем которого названа 4-я фигура категорического силлогизма; Порфирия, известного разработанной им наглядной схемой, отображающей отношения подчинения между понятиями («древо Порфирия»); Боэция, сочинения которого длительное время служили основными логическими пособиями. Логика развивалась и в средние века, однако схоластика исказила учение Аристотеля, приспособив его для обоснования религиозной догматики. Значительны успехи логической науки в Новое время. Важнейшим этапом в ее развитии явилась теория индукции, разработанная английским философом Ф. Бэконом (1561—1626). Бэкон подверг критике извращенную средневековой схоластикой дедуктивную логику Аристотеля, которая, по его мнению, не может служить методом научных открытий. Таким методом должна быть индукция, принципы которой изложены в его сочинении «Новый Органон» (в отличие от старого, аристотелевского «Органона»). Разработка индуктивного метода — огромная заслуга Бэкона, однако он неправомерно противопоставил его методу дедукции; в действительности эти методы не исключают, а дополняют друг друга. Бэкон разработал методы научной индукции, систематизированные впоследствии английским философом и логиком Дж.С. Миллем (1806—1873). Дедуктивная логика Аристотеля и индуктивная логика Бэкона — Милля составили основу общеобразовательной дисциплины, которая в течение длительного времени была обязательным элементом европейской системы образования и составляет основу логического образования в настоящее время. Эту логику принято называть формальной, так как она возникла и развивалась как наука о формах мышления. Ее называют также традиционной, или аристотелевской логикой. Дальнейшее развитие логики связано с именами таких выдающихся западно-европейских мыслителей, как Р. Декарт, Г. Лейбниц, И. Кант и др. Французский философ Р. Декарт (1569—1650) выступил с критикой средневековой схоластики, он развил идеи дедуктивной логики, сформулировал правила научного исследования, изложенные в сочинении «Правила для руководства ума». В 1662 г. в Париже вышла книга «Логика, или Искусство мыслить», написанная последователями Декарта А. Арно и П. Николем, известная также под названием «Логика Пор-Рояля»[7] Книга оказала заметное влияние на всю последующую историю развития логики. Крупный вклад в исследование логических проблем внесли немецкий философ Г. Лейбниц (1646—1716), сформулировавший закон достаточного основания, выдвинувший идею математической логики, которая получила развитие лишь в XIX—XX вв.; немецкий философ И. Кант (1724—1804) и многие другие западно-европейские философы и ученые[8]. Значительны заслуги в развитии логики русских философов и ученых. Ряд оригинальных идей выдвинули М.В. Ломоносов (1711— 1765), А.Н.Радищев (1749—1802), Н.Г.Чернышевский (1828— 1889). Известны своими новаторскими идеями в теории умозаключений русские логики М.И. Карийский (1804—1917) и Л.В. Рутков-ский (1859—1920). Одним из первых начал развивать логику отношений философ и логик С.И. Поварнин (1807—1952). Во второй половине XIX в. в логике начинают широко применять разработанные в математике методы исчисления. Это направление разрабатывается в трудах Д. Буля, У.С. Джевонса, П.С. Порецкого, Г. Фреге, Ч. Пирса, Б. Рассела, Я. Лукасевича и других математиков и логиков. Теоретический анализ дедуктивных рассуждений методами исчисления с использованием формализованных языков получил название математической, или символической, логики[9]. Символическая логика — интенсивно развивающаяся область логических исследований, включающая множество разделов, или, как их принято называть, «логик» (например, логика высказываний, логика предикатов, вероятностная логика и т.д.). Большое внимание уделяется разработке многозначной логики, в которой помимо принятых в традиционной логике двух значений истинности — «истинно» и «ложно» — допускается много значений истинности. Так, в разработанной польским логиком Я. Лукасевичем (1878—1956) трехзначной логике вводится третье значение — «возможно» («нейтрально»). Им же построена система модальной логики со значениями «возможно», «невозможно», «необходимо» и т.п., а также четырехзначная и бесконечнозначная логики. Перспективными являются такие разделы, как вероятностная логика, исследующая высказывания, принимающие множество степеней правдоподобия — от 0 до 1, временная логика и многие другие. Особое значение для правоведения имеет раздел модальной логики, получивший название деонтической логики, исследующий структуры языка предписаний, т.е. высказываний со значением «обязательно», «разрешено», «запрещено», «безразлично», которые широко используются в правотворческой и правоохранительной деятельности. Исследование процессов рассуждения в системах символической логики оказало заметное влияние на дальнейшее развитие формальной логики в целом. Вместе с тем символическая логика не охватывает всех проблем традиционной формальной логики и не может полностью заменить последнюю. Это два направления, две ступени в развитии формальной логики. Особенность формальной логики состоит в том, что она рассматривает формы мышления, отвлекаясь от их возникновения, изменения, развития. Эту сторону мышления изучает диалектическая логика, впервые в развернутом виде представленная в объективно-идеалистической философской системе Гегеля (1770— 1831) и с материалистических позиций переработанная в философии марксизма. Диалектическая логика изучает законы развития человеческого мышления, а также методологические принципы и требования, которые формируются на их основе. К ним относятся объективность и всесторонность рассмотрения предмета, принцип историзма, раздвоение единого на противоположные стороны, восхождение от абстрактного к конкретному, принцип единства исторического и логического и др. Диалектическая логика служит методом познания диалектики объективного мира. Логика формальная и логика диалектическая изучают один и тот же объект — человеческое мышление, но при этом каждая из них имеет свой предмет исследования. Это значит, что диалектическая логика не заменяет и не может заменить логику формальную. Это две науки о мышлении, они развиваются в тесном взаимодействии, которое отчетливо проявляется в практике научно-теоретического мышления, использующего в процессе познания как формально-логический аппарат, так и средства, разработанные диалектической логикой. Формальная логика изучает формы мышления, выявляя структуру, общую для различных по содержанию мыслей. Рассматривая, например, понятие, она изучает не конкретное содержание различных понятий (это задача специальных наук), а понятие как форму мышления, независимо от того, какие именно предметы мыслятся в понятиях. Изучая суждение, логика отвлекается от их конкретного содержания, выявляя структуру, общую для различных по содержанию суждений. Формальная логика изучает законы, обусловливающие логическую правильность мышления, без соблюдения которой нельзя прийти к результатам, соответствующим действительности, познать истину. Мышление, не подчиняющееся требованиям формальной логики, не способно правильно отражать действительность. Поэтому изучение мышления, его законов и форм нужно начинать с формальной логики, изложение основ которой и составляет задачу предлагаемого учебника.
|