Вторая глава Определенное количество 9 страница
Другую главную область, к которой прилагается диференциальное исчисление, представляет механика; попутно мы отчасти уже касались смысла различных степенных функций, получающихся при элементарных уравнениях ее 22 Гегель, том V, Наука логики {338} предмета, движения; здесь я буду говорить о них непосредственно. Уравнение, а именно математическое выражение просто равномерного движения с = у или s = ct, в котором пройденные пространства пропорциональны протекшим временам по некоторой эмпирической единице с, величине скорости, не имеет смысла диференцировать; коэфициент с уже совершенно определен и известен, и здесь не «может иметь места никакое дальнейшее развертывание степени, никакое дальнейшее разложение в ряд. — Как анализируется s = a^2, уравнение движения падения тел, об этом мы уже вкратце сказали выше; первый член анализа jt=2af выражается словесно и, следовательно, понимается, как существующий реально таким образом, что он есть член некоторой суммы (каковое представление мы уже давно устранили), одна часть движения и притом та часть его, которая приписывается силе инерции, т. е., просто-равномерной скорости таким образом, что в бесконечно-малых частях времени движение принимается за равномерное, а в конечных частях времени, т. е. в существующих на самом деле, — за неравномерное. Разумеется, fs = 2at и значение а и t, взятых сами» по себе, известно, равно как известно и то, что этим самым дано определение скорости равномерного движения: так как я=^, то вообще 2at=j; но этим мы нисколько не подвинулись вперед в нашем знании; лишь ложное предположение, будто 2at есть часть движения как некоторой суммы, дает ложную видимость физического предложения. Самый множитель, я, эмпирическая единица — некоторое определенное количество, как таковое — приписывается тяготению; если здесь применяют категорию силы тяготения, то нужно сказать, что, наоборот, как раз целое s = at2 есть действие или, лучше сказать, · закон тяготения. — То же самое верно и относительно выведенного из^=2а/ положения, гласящего, что если бы прекратилось действие силы тяжести, то тело со скоростью, приобретенной им в конце своего падения, прошло бы во время, равное времени его падения, пространство вдвое большее пройденного. — В этом {339} положении заключается также» и сама по себе превратная метафизика: конец падения или конец той части» времени, в которое падало тело, всегда сам еще есть некоторая часть времени; если бы он не был таковой частью, то наступил бы покой и«, следовательно, не было бы никакой скорости; скорость может быть установлена лишь по пространству, пройденному в некоторую часть времени, а не в конце ее. Если же кроме того и· в других физических областях, где вовсе нет никакого движения, как например относительно поведения света (помимо того, что называют его распространением в пространстве) и относительно определений величин в цветах, применяют диференциальное исчисление и первая производная функция некоторой квадратной функции здесь также именуется скоростью, то на это следует смотреть, как на еще более несостоятельный формализм выдумывания существования. — Движение, изображаемое уравнением s = at2, говорит Лагранж, мы находим в опыте падения тел; простейшим следующим за ним было бы движение, уравнением которого является s = cfi, но такого движения не оказывается в природе; мы не знали бы, ч, тб может означать собою коэфициент с. Если это верно, то, напротив, существует движевие, уравнением которого является s* = at2 — кемеровский закон движения тел солнечной системы. И разрешение вопроса о том, что здесь должна означать первая производная функция ^ и т. д., а также дальнейшая непосредственная разработка этого уравнения путем дифе- ренцирования, развитие законов и определений указанного абсолютного движения, отправляясь от этой исходной точки зрения, должно бы, конечно, представить собою интересную задачу, в решении которой анализ явил бы себя в достойнейшем блеске. Таким образом само по себе взятое приложение диференциального исчисления к элементарным уравнениям движения не представляет реального интереса; формальный же интерес проистекает из общего механизма исчисления. Но иное значение получает разложение движения в отно- 22* {340} шении определения его траектории; если последняя есть кривая и ее уравнение содержит высшие степени, то требуются переходы от прямолинейных функций возвышения в степень к самим степеням), а так как первые должны быть выведены из первоначального уравнения движения, содержащего фактор времени, с элиминированием времени, то этот фактор вместе» с тем должен быть низведен к тем низшим функциям развертывания, из которых могут быть получены означенные уравнения линейных определений. Эта сторона приводит к рассмотрению интереса другой части диференциального исчисления. Сказанное доселе имело своей целью выделить и установить простое специфическое определение диференциаль- ного исчисления и показать наличие этого определения на некоторых элементарных примерах. Это определение, как оказалось, состоит в том, что из уравнения степенных функций находят коэфициент члена разложения, так называемую первую производную функцию, и что обнаруживают наличие того отношения, которое она собою представляет, в моментах конкретного предмета, посредством какового, полученного таким образом уравнения между обоими отношениями определяются сами эти моменты. Мы должны вкратце рассмотреть также и принцип интегрального исчисления и установить, что получается из его приложения для его специфического конкретного определения. Понимание этого исчисления было нами упрощено и определено более правильно уже благодаря одному тому, что мы его больше не принимаем за метод суммирования, как его назвали в противоположность диференцированию (в котором приращение считается существенным ингредиентом), вследствие чего интегрирование представлялось находящимся в существенной связи с формой ряда. — Что касается задачи этого исчисления, то таковой, во-первых, так же как и в диферен- циальном исчислении, является теоретическая или, скорее, формальная задача, но, как известно, обратная задаче диференцирования. Здесь исходят из функции, рассматриваемой как производная у как коэфициент ближайшего члена, получающегося в результате разложения в ряд некоторого, {341} пока еще неизвестного уравнения, а» из этой производной должна быть найдена первоначальная степенная функция; та функция, которая в естественном порядке развертывания должна быть рассматриваема как первоначальная, здесь выводится, а рассматривавшаяся ране© как производная есть здесь данная или вообще начальная. Но формальная сторона этого действия представляется уже выполненной диференциальным исчислением, так как в последнем устанавливается вообще переход и отношение первоначальной функции к функции, получающейся в результате разложения в ряд. Если при этом отчасти уже для того, чтобы взяться за ту функцию, из которой следует исходить, отчасти же для того, чтобы осуществить переход от нее к первоначальной функции, оказывается необходимым во многих случаях прибегнуть к форме ряда, то следует прежде всего твердо помнить, что эта форма как таковая не имеет непосредственно ничего общего с собственным принципом интегрирования. Но другой стороной задачи этого исчисления является с точки зрения формальной операции его приложение. А последнее само представляет собой задачу узнать, какое предметное значение (в вышеуказанном смысле) имеет та первоначальная функция, которую мы находим по данной функции, принимаемой за первую [производную]. Может казаться, что с этим учением, взятым само по себе, также покончено уже в диференциальном исчислении. Однако здесь появляется дальнейшее обстоятельство, вследствие которого дело оказывается не так просто. А именно, так как в этом исчислении оказывается, что благодаря первой производной функции уравнения кривой получилось некоторое линейное отношение, то тем самым мы также знаем, что интегрирование этого отношения дает уравнение кривой в виде отношения абсциссы и ординаты; или, если бы было дано уравнение для площади кривой, то диференциальное исчисление должно было бы предварительно научить нас относительно значения первой производной функции такого уравнения, что эта функция представляет ординату как функцию абсциссы, стало быть, представляет уравнение кривой.
{342} Но главное дело здесь в том, какой из моментов определения предмета дан в самом уравнении, ибо лишь от данного» может отправляться аналитическая трактовка, чтобы переходить от него к прочим определениям предмета. Дано, например, не уравнение поверхности, образуемой кривою, и не уравнение возникающего посредством ее вращения тела, а также и не уравнение некоторой дуги этой кривой, а лишь отношение абсциссы и ординаты в уравнении самой кривой. Переходы от указанных определений к самому этому уравнению не могут уже поэтому быть предметом самого диференциального исчисления; нахождение таких отношений есть дело интегрального исчисления. Но, далее, было уже показано, что диференцирование уравнения с несколькими переменными величинами дает степенной член разложения (die Entwicklungspotenz) (51) или диференциальный коэфициент не как уравнение, а только как отношение; задача состоит затем в том, чтобы в моментах предмета указать для этого отношения, которое есть производная функция, другое равное ему. Напротив, предметом интегрального исчисления является само отношение первоначальной к производной, в этом случае данной функции, и задача состоит в том, чтобы указать значение искомой первоначальной функции в предмете данной первой производной функции или, вернее, так как это значение, например, площадь, ограничиваемая кривой или подлежащая ректифицированию, представляемая в виде прямой кривая и т. д., уже высказано как задача, то требуется показать, что такое определение может быть найдено посредством некоторой первоначальной функции, и вместе с тем показать, каков тот момент предмета, который для этой цели должен быть принят за исходную функцию, каковою в данном случав служит производная функция. Обычный метод, пользующийся представлением бесконечно малой разности, слишком облегчает себе задачу. Для квадратуры кривых линий он принимает бесконечно малый треугольник, произведение ординаты на элемент (т. е. на бесконечно малую часть) абсциссы, за трапецию, имеющую одной своей стороной бесконечно-малую дугу, противопо- {343} ложную сказанной бесконечно-малой части абсциссы. Произведение это и интегрируется в том смысле, что интеграл дает сумму бесконечно многих трапеций, ту плоскость, которую требуется определить, т. е. конечную величину сказанного элемента плоскости. И точно так же обычный метод образует из бесконечно-малой дуги и соответствующих ей ординаты и абсциссы прямоугольный треугольник, в котором квадрат этой дуги считается равным сумме квадратов обоих других бесконечно малых, интегрирование которых и дает конечную дугу. Этот прием имеет своей предпосылкой то общее открытие, которое лежит в основании этой области анализа и которое здесь выступает в виде положения о том, что квадратура кривой, выпрямленная дуга и т. д. находится к известной (данной уравнением кривой) функцию в отношении так называемой первоначальной функции к производной. Здесь дело идет о том, чтобы в случае, если известная часть какого-нибудь математического предмета (например, некоторой кривой) принимается за производную функцию, узнать, какая другая его часть выражается соответствующей первоначальной функцией. Мы знаем, что если данная уравнением кривой функция ординаты принимается за производную функцию, то соответствующая ей первоначальная функция есть выражение величины отрезанной этой ординатой и кривой плоскости, что если как производная функция рассматривается известное определение касательной, то ее первоначальная функция выражает величину соответствующей этому определению дуги и т. д. Однако заботу о том, чтобы узнать и доказать, что эти отношения — отношение первоначальной функции к производной в отношение величин двух частей или «двух обстоятельств математического предмета — образуют пропорцию, — заботу об этом снимает с себя метод, пользующийся бесконечно-малым и механически оперирующий им. Своеобразной заслугой является уже то остроумие, с которым на основании результатов, известных уже заранее из других источников, этот метод открывает, что известные и именно такие- то стороны математического предмета находятся между {344} собою в отношении первоначальной функции к производной. Из этих двух функций производная или·, как она была определена выше, функция возвышения в степень, есть здесь, в интегральном исчислении, данная по отношению к первоначальной функции, которая еще должна быть найдена из нее путем интегрирования. Однако первая дана не непосредственно, а равно не дано уже само по себе, какая часть или какое определение математического предмета должно быть расссматриваемо как производная функция, дабы через приведение этого определения к первоначальной функции найти другую часть или другое определение предмета, то определение, величину которого требуется установить. Обычный метод, сразу же представляющий, как мы сказали, известные части предмета как бесконечно-малые в форме производных функций, находимых из первоначально данного уравнения предмета вообще посредством диференци- рования (как, например, для выпрямления кривой бесконечно-малые абсциссы и ординаты), принимает за таковые те части или определения, которые можно привести в такую связь с предметом задачи (в нашем примере с дугой), также представляемым, как бесконечно-малый, которая установлена элементарной математикой, благодаря чему, если известны означенные части, то определяется также и та часть, величину которой требуется найти; так, например, для выпрямления кривой указанные три бесконечно-малых приводятся в связь уравнения прямоугольного треугольника, для ее квадратуры ордината и бесконечно-малая абсцисса приводятся в связь некоторого произведения, причем площадь принимается вообще за арифметическое произведение линий. Переход от этих так называемых элементов площади, дуги и т. д. к величине самих площадей, дуги и т. д. считается тогда лишь восхождением от бесконечного выражения к конечному или к сумме бесконечно многих элементов, из которых, согласно предположению, состоит искомая величина. Можно, поэтому, сказать лишь поверхностно, что интегральное исчисление есть только обратная, но вообще более трудная проблема диференциального исчисления. Дело {345} обстоит, напротив, скорее так, что реальный интерес интегрального исчисления направлен исключительно на взаимное отношение первоначальной и производной функции в конкретных предметах. Лагранж и в этой части исчисления столь же «мало соглашался отделаться от трудности, которую представляли эти проблемы, рассмотренным гладким способом путем принятия вышеуказанных прямых допущений. Для разъяснения сущности дела будет полезно привести здесь также и некоторые детали его приема на немногих примерах. Этот прием ставит себе как раз задачей отдельно доказать, что между частными определениями некоторого математического целого, например некоторой кривой, имеет место отношение первоначальной функции к производной. Но в силу природы самого отношения, приводящего в связь в некотором математическом предмете кривые с прямыми линиями, линейные измерения и функции с поверхностно-плоскостными измерениями и их функцией и т. д., приводящего, следовательно, в связь качественно разное, это не может быть выполнено в указанной области прямым путем, и определение, таким образом, можно понимать лишь как середину между некоторым большим и некоторым меньшим. Благодаря этому, правда, само собою снова появляется форма приращения с плюсом и минусом, и бодрое «developpons» («развернем в ряд») снова очутилось на своем месте; но мы уже говорили выше о том, что здесь приращения имеют лишь арифметическое конечное значение. Из развертывания того условия, что подлежащая определению величина больше некоторого легко определяемого предела и меньше другого предела, выводится затем, например, что функция ординаты есть первая производная функция к функции площади. Выпрямление прямых по способу, показанному Лагранжем, который при этом исходит из архимедовского принципа, интересно тем, что оно проливает свет на перевод архимедовского метода на язык принципа нового анализа, а это позволяет бросить взгляд во внутренний строй и в истинный смысл действия, механически производимого другим путем. Способ действия при этом по необходимости ана- {346} логичен вышеуказанному способу. Архимедовский принцип, согласно которому дута кривой больше соответствующей ей хорды и «меньше суммы двух касательных, проведенных в конечных точках дуги, поскольку эти касательные заключены» между этими точками и точкой их пересечения, не дает прямого уравнения. Переводом этого архимедовского основного определения на язык новой аналитической формы служит изобретение такого выражения, которое, взятое само по себе, есть простое основное уравнение, между тем как указанная форма лишь выставляет требование двигаться, совершать переходы до бесконечности «между некоторым слишком большим и некоторым слишком малым, которые каждый раз получают определенную величину, причем в результате такого постоянного движения всегда получаются опять-таки лишь новые слишком большие и слишком малые, но во вое более и более тесных пределах. Посредством формализма бесконечно-малых сразу же создается уравнение dz2 = dx2 — f- dy2. Исходя из указанной основы, лагранжево изложение доказывает, напротив, что величина дуги есть первоначальная функция к некоторой производной функции, характеризующий член которой сам есть функция отношения производной функции к первоначальной функции ординаты. Так как в способе Архимеда, точно так же, как и позднее в исследовании Кеплером стереометрических предметов, встречается представление о бесконечно-малом, то это обстоятельство слишком часто приводилось в качестве авторитета в пользу того употребления, которое делают из этого представления в диференциальном исчислении, причем не выделялись черты своеобразия и отличия. Бесконечно-малое означает прежде всего отрицание определенного количества как такового, т. е. так называемого конечного выражения или той завершенной определенности, которой обладает определенное количество как таковое. И точно так же в последующих знаменитых методах Валериуса, Кавальери и др., основанных на рассмотрении отношений геометрических предметов, основным определением является положение о том, что определенное количество, {347} как определенное количество таких определений, которые ближайшим образом рассматриваются лишь в отношении, оставляется для этой цели в стороне, и эти определения должны быть принимаемы сообразно с этим за не имеющие величины (Nicht-Grosses). Но отчасти этим не познано и «не выделено то утвердительное вообще, которое лежит за исключительно отрицательным определением и «которое выше оказалось, говоря абстрактно, качественной определенностью величины, состоящей, говоря более определенно, в степенном отношении; отчасти же, поскольку само это отношение в свою очередь включает в себя множество ближе определенных отношений, как например, отношение между некоторой степенью и функцией, получающейся в результате ее разложения в ряд, они должны были бы быть в свою очередь обоснованы всеобщим и отрицательным определением того же бесконечно-малого ив выведены из него. В только что приведенном изложении Лагранжа найдено то определенное утвердительное, которое заключается в архимедовом способе развертывания задачи, и тем самым приему, обремененному неограниченным выхождением, дана его настоящая граница. Величие нового изобретения, взятого само по себе, и его способность разрешать до того времени неприступные задачи, а те задачи, которые и ранее были разрешимы, разрешать более простым способом, — это величие следует видеть исключительно в открытии отношения первоначальной функции к так называемой производной функции и тех частей математического целого, которые находятся в таком отношении. Данное нами изложение взглядов можно считать достаточным для нашей цели, заключающейся в том, чтобы подчеркнуть своеобразие того отношения величин, которое служит предметом рассматриваемого здесь особого вида исчисления. Излагая эти взгляды, мы могли ограничиться простыми задачами и способом их решения; и ни цели, которая исключительно имелась здесь в виду (а именно: установить определенность понятия рассматриваемых определений), ни силам автора не соответствовало бы обозреть весь объем так называемого приложения диференциального и интеграль- {348} ного исчисления и завершить индукцию, гласящую, что найденный принцип лежит в основании этих видов исчисления, сведением всех их задач и решений последних к этому принципу. Но изложенное достаточно показало, что, как каждый особый вид исчисления имеет своим предметом особую определенность или особое отношение величины и такое отношение конституирует сложение, умножение, возвышение в степень и извлечение корня, счет посредством логарифмов, рядов и т. д., — точно так же обстоит дело и с ди- ференциальным и интегральным исчислением; для того отношения, которое присуще этому исчислению, наиболее подходящим названием было бы отношение степенной функции к функции ее развертывания или возвышения в степень, так как это название всего ближе к пониманию сущности дела. Лишь так, как в этом исчислении вообще применяются равным образом и действия, основанные на других отношениях величин, например сложение и т. д., в нем применяются также и отношения логарифмов, круга и рядов, в особенности для того, чтобы сделать более удобными выражения, нужные для требуемых действий вывода первоначальных функций из функций развертывания. С формой ряда диференциальное и интегральное исчисление имеет, правда, тот ближайший общий интерес, что оба они стремятся определить те функции развертывания, которые в рядах называются коэфициентами членов; но в то время как интерес этого исчисления простирается лишь на отношение первоначальной функции к ближайшему коэфициенту ее развертывания, ряд стремится представить некоторую сумму в виде множества членов, расположенного по степеням, снабженным этими коэфициентами. Бесконечное, имеющее место в бесконечном ряде, неопределенное выражение отрицания определенного количества вообще, не имеет ничего общего с утвердительным определением, заключающимся в бесконечном этого исчисления. И точно так же бесконечно- малое как приращение, посредством которого развертывание принимает форму ряда, есть лишь внешнее средство для развертывания, и его так называемая бесконечность не имеет никакого другого значения, кроме значения такого сред- {349} ства; ряд, так как он на самом деле не есть то, что требуется, приводит к некоторой избыточности, вновь отбросить которую стоит лишнего труда. Этой необходимостью лишнего труда страдает также и «метод Лагранжа, который вновь прибег преимущественно к форме ряда, хотя благодаря именно этому методу в том, что называют приложением, выступает истинное своеобразие высшего анализа, так как, но втискивая в предметы форм dx, dy и т. д., метод Лагранжа прямо указывает ту часть этих предметов, которой свойственна определенность производной функции (функции развертывания), и этим обнаруживает, что форма ряда вовсе не есть то, о чем здесь идет речь *. * В вышеприведенной критике (Jahrb. fur wissensch. Krit., Bd. II, 1827, Nr. 155, 6 и сл.) помещены интересные высказывания основательного ученого специалиста г. Шпера, приведенные из его «Principien des Fluentenkalkuls», Braunschweig, 1826, касающиеся именно одного из обстоятельств, существенно способствующих внесению в диферсн- циальное исчисление темноты и ненаучности, и согласующиеся со сказанным нами относительно того, как обстоит вообще дело с теорией этого исчисления. «Чисто арифметических исследований, — говорится там, — которые, правда, из всех подобных больше всего имеют отношение к диференциальному исчислению, не отделили от собственно диферсн- циального исчисления, и даже принимали, как например, Лагранж, эти исследования за самую суть, между тем как на последнюю смотрели лишь как на их приложения. Эти арифметические исследования обнимают собою правила диференцирования, вывод теоремы Тейлора и т. д. и даже различные методы интегрирования. Дело же обстоит как раз наоборот: эти приложения суть именно то, что составляет предмет собственно дифе- ренциального исчисления, все же те арифметические рассуждения (Entwicklungen) и действия оно предполагает известными из анализа». — Мы показали, как у Лагранжа отделение так называемого приложения от приема общей части, исходящего из рядов, служит именно к тому, чтобы сделать явственным своеобразное дело диференциального исчисления, взятого само по себе. Но ввиду интересного усмотрения автора, что именно так называемые приложения и составляют предмет собственно диференциального исчисления, нужно удивляться, каким образом он впадает в (приведенную там же) формальную метафизику непрерывной величины, становления, течения и т. д., и' еще хочет даже умножить этот баласт; эти определения формальны потому, что они суть лишь общие категории, не указывающие именно специфической стороны дела, которую следовало погнать и абстрагировать из конкретных учений, из приложений.
{360} Примечание 3 Еще другие формы, находящиеся в связи с качественной определенностью величины Бесконечно-малое диференциального исчисления есть в своем утвердительном смысле качественная определенность величины, а об этой последней мы показали ближе, что она в этом исчислении наличествует не только вообще как степенная определенность, но как особенная степенная определенность отношения некоторой степенной функции к степенному члену разложения (Entwicklungspotenz) (51a). Но качественная определенность имеется также еще и в дальнейшей, так сказать, более слабой форме, и эта последняя, равно как связанно© с нею употребление бесконечно» малых и их смысл! в этом употреблении, должны еще быть рассмотрены в настоящем примечании. Исходя из предшествующего, мы должны в этом отношении сперва напомнить, что различные степенные определения выступают с аналитической стороны прежде всего таким образом, что они оказываются лишь формальными и совершенно однородными, означают числовые величины, которые как таковые не имеют вышеуказанного качественного различия друг от друга. Но в приложении к пространственным предметам аналитическое отношение являет себя во всей своей качественной определенности, как переход от линейных к плоскостным определениям, от прямолинейных к криволинейным определениям и т. д. Далее, это приложение влечет за собой то последствие, что пространственные предметы, согласно своей природе данные в форме непрерывных величин, понимаются, как дискретные, — плоскость, значит, понимается, как множество линий, линия, как множество точек и т. д. Единственный интерес такого разложения состоит в определении самих точек, на которые разлагается линия, линий, на которые разлагается плоскость, и т. д., чтобы, исходя из такого определения, иметь возможность двигаться далее аналитически, т.-е., собственно говоря, арифметически; эти исходные пункты представляют собой для искомых определений величины {351} те элементы, из которых должны быть выведены функция и уравнение для конкретного, для непрерывной величины. Для решения задач, в которых по преимуществу оказывается выгодным употреблять этот прием, требуют, чтобы в виде элемента наличествовало в качестве исходного пункта некое само по себе определенное, в противоположность непрямому ходу решения, поскольку последний может начинать лишь с пределов,»между которыми лежит то само по себе определенное, нахождение которого он ставит себе целью. Полученный результат сводится в обоих методах к одному и тому же, если только оказывается возможным найти закон все дальнейшего и дальнейшего определения, при отсутствии возможности достигнуть полного, т. е. так называемого конечного определения. Кеплеру приписывается честь, что ему впервые пришла, в голову мысль прибегнуть к указанному обратному ходу решения и сделать исходным пунктом дискретное. Его объяснение того, как он понимает первую теорему архимедова измерения круга, выражает это очень просто. Первая теорема Архимеда, как известно, гласит, что круг равен прямоугольному треугольнику, один катет которого равен радиусу, а другой — длине окружности. Так как Кеплер находит смысл этой теоремы в том, что окружность круга содержит в себе столько же частей, сколько точек, т. е. бесконечно много, из которых каждая может рассматриваться как основание равнобедренного треугольника, то он этим выражает разложение непрерывного в форму дискретного. Встречающееся здесь выражение «бесконечное» еще очень далеко от того определения, которое оно должно иметь в диференциальном исчислении. Если для таких дискретных найдена некоторая определенность, функция, то в дальнейшем они должны быть соединены, должны по существу служить элементами непрерывного. Но так как никакая сумма точек не образует линии, никакая сумма линий не образует плоскости, то точки уже с самого начала принимаются за линейные, равно как линии за плоскостные. Однако, так как вместе с тем указанные линейные точки еще не должны быть линиями, чем они были бы, если бы их {352} принимали за определенные количества, то их представляют себе как бесконечно-малые. Дискретное способно лишь к внешнему объединению, в котором моменты сохраняют смысл дискретных одних; аналитический переход от последних совершается лишь к их сумме, он не есть вместе с тем геометрический переход от точки к линии и?? линии к плоскости и т. д. Элементу, имеющему свое определение как точка или как линия, придается поэтому вместе с тем наряду с качеством точки еще и качество линейности, а линии — еще и качество плоскости, дабы сумма как сумма маленьких линий оказалась линией и как сумма маленьких плоскостей — плоскостью.
|