ОПОРЫ ВАЛОВ И ОСЕЙ
Валы и вращающиеся оси монтируют на опорах, которые определяют положение вала или оси, обеспечивают вращение, воспринимают нагрузки и передают их основанию машины. Основной частью опор являются подшипники, которые могут воспринимать радиальные, радиально-осевые и осевые нагрузки; в последнем случае опора называется подпятником, а подшипник носит название упорного. По принципу работы различают подшипники скольжения, в которых цапфа вала скользит по опорной поверхности, и подшипники качения, в которых между поверхностью вращающейся детали и опорной поверхностью расположены тела качения. От качества подшипников в значительной степени зависит работоспособность, долговечность и КПД машин. Подшипники, работающие по принципу трения скольжения, называются подшипниками скольжения. Простейшим подшипником скольжения является отверстие, расточенное непосредственно в корпусе машины, в которое обычно вставляют втулку (вкладыш) из антифрикционного материала. Достоинства подшипников скольжения: малые габариты в радиальном направлении, хорошая восприимчивость ударных и вибрационных нагрузок, возможность применения при очень высоких частотах вращения вала и в прецизионных машинах, большая долговечность в условиях жидкостного трения, возможность использования при работе в воде или агрессивной среде. Недостатки подшипников скольжения: большие габариты в осевом направлении, значительный расход смазочного материала и необходимость систематического наблюдения за процессом смазывания, необходимость применения дорогостоящих и дефицитных антифрикционных материалов для вкладышей. Вышеперечисленные достоинства и недостатки определяют применение подшипников скольжения, например в молотах, поршневых машинах, турбинах, центрифугах, координатно-расточных станках, для валов очень больших диаметров, а также для валов тихоходных машин. КПД подшипников скольжения h=0, 95...0, 99. Существует очень много конструкций подшипников скольжения, которые подразделяются на два вида: неразъемные и разъемные. Неразъемный подшипник (рис. 38) состоит из корпуса и втулки, которая может быть неподвижно закреплена в корпусе подшипника или свободно заложена в него («плавающая втулка»). Неразъемные подшипники используют главным образом в тихоходных машинах, приборах и т. д. Их основное преимущество – простота конструкции и низкая стоимость. Разъемный подшипник (рис. 39) состоит из основания и крышки корпуса, разъемного вкладыша, смазочного устройства и болтового или шпилечного соединения основания с крышкой. Износ вкладышей в процессе работы компенсируется поджатием крышки к основанию. Разъемные подшипники значительно облегчают сборку и незаменимы для конструкций с коленчатыми валами. Разъемные подшипники широко применяются в общем и особенно тяжелом машиностроении.
Рис. 39
равномерное распределение нагрузки по длине вкладыша. Такие подшипники применяются при большой длине цапф. Сегментные подшипники с качающимися вкладышами (рис. 41) хорошо центрируют вал и обеспечивают стабильную работу подшипниковых узлов, поэтому их применяют для быстроходных валов, особенно при опасности возникновения вибраций. Упорный подшипник скольжения (подпятник) (рис. 42) в основном предназначен для восприятия осевых нагрузок. Корпуса подшипников обычно изготовляются из чугуна. Вкладыши изготовляют из подшипниковых материалов, которые
пластики и др.), комбинированные (пористые металлы, пропитанные пластмассой; пластмассы с наполнителем из металла или графита; слоистые материалы типа металл–пластмасса). Втулки подшипников скольжения (металлические, биметаллические и из спекаемых материалов) стандартизованы. Подшипники, работающие по принципу трения качения, называются подшипниками качения. В настоящее время такие подшипники имеют наибольшее распространение. Подшипники качения изготовляют в большом диапазоне стандартных типоразмеров с наружным диаметром от 2 ммдо 2, 8 м и массой от долей грамма до нескольких тонн.
направлении, невысокая стоимость (массовое производство) и высокая степень взаимозаменяемости. К недостаткам подшипников качения относятся: чувствительность к ударным и вибрационным нагрузкам, большие габариты в радиальном направлении, малая надежность в высокоскоростных приводах. Кольца и тела качения обычно изготовляют из подшипниковых сталей с высоким содержанием хрома, например ШХ15, ШХ20СГ, 18ХГТ и др. Сепараторы штампуют из качественной углеродистой конструкционной стали. Массивные сепараторы для высокоско- ростных подшипников изготовляют из медных и алюминиевых сплавов, текстолита, магниевого чугуна и др. Кольца и тела качения подшипников закаливаются до твердости 60...65 HRCэ. Классификация подшипников качения может осуществляться по многим признакам, а именно: по форме тел качения (шариковые, цилиндрические и конические роликовые, игольчатые); по числу рядов тел качения (однорядные, двухрядные и многорядные); по направлению воспринимаемой нагрузки (радиальные, радиально-упорные, упорно-радиальные, упорные, комбинированные); по возможности самоустановки (самоустанавливающиеся, несамоустанавливающиеся); по габаритным размерам (серии диаметров и ширин); по конструктивным особенностям. ГОСТ устанавливает для подшипников качения следующие классы точности (в порядке повышения точности): 0; 6; 5; 4 и 2. Нормальный класс точности обозначается цифрой 0, сверхвысокий класс точности обозначается 2. В общем машиностроении обычно применяют подшипники класса точности 0. Система условных обозначений шариковых и роликовых подшипников качения устанавливается ГОСТом. Нули, стоящие в обозначении левее значащих цифр, не показывают. Основное условное обозначение подшипников качения ведется цифрами по следующей схеме:
Порядок отсчета цифр в условном обозначении подшипника ведется справа налево. Первые две цифры справа обозначают внутренний диаметр подшипников диаметром от 20 до 495 мм, причем обозначение получается путем деления значения диаметра на 5. Подшипники с внутренним диаметром 10мм обозначаются 00; 12 мм – 01; 15 мм – 02; 17 мм – 03. КПД одной пары подшипников качения h=0, 99...0, 995. Наиболее дешевыми и распространенными в машиностроении являются шариковые радиальные однорядные подшипники (рис. 43), способные воспринимать также осевую нагрузку в обоих направлениях, если она не превышает одной трети радиальной нагрузки. Эти подшипники допускают угловое смещение внутреннего кольца относительно наружного до 10'. Цилиндрический роликовый подшипник с короткими цилиндрическими роликами (рис. 44, а) допускает только радиальную нагрузку. Нагрузочная способность таких подшипников по сравнению с однорядными шариковыми больше примерно в 1, 5 раза, а долговечность в 3, 5 раза. Подшипник допускает осевое смещение колец, но не допускает их угловое смещение. Конический роликовый подшипник (рис. 44, б) с коническими роликами воспринимает радиальную и осевую нагрузку (радиально-упорный подшипник), обладает большой нагрузочной способностью, не допускает угловое смещение колец. Если угол контакта a> 45°, то подшипник называется упорно-радиальным. Радиально-упорный шариковый подшипник (рис. 44, в) обладает по сравнению с коническими роликоподшипниками несколько меньшей нагрузочной способностью. Стандартные радиально-упорные шарикоподшипники выпускаются с углами контакта a=12, 26 и 36°. Сферический шариковый подшипник (рис. 44, г) имеет сферическую дорожку качения на наружном кольце, благодаря чему допускает значительное (до 2–3°) угловое смещение колец. Эти подшипники предназначены в основном для радиальной, но воспринимают и небольшую осевую нагрузку.
Рис. 44
Следует заметить, что применение более дешевых шариковых подшипников не гарантирует экономичность конструкции, так как более дорогие роликовые подшипники дают возможность уменьшить размеры и массу подшипниковых узлов и значительно увеличить их долговечность. Кроме шариковых, существуют сферические роликовые подшипники с бочкообразными роликами. Для обеспечения возможности самоустанавливаться при монтаже, компенсируя при этом несоосность посадочных мест, радиальные шариковые и роликовые подшипники могут быть изготовлены со сферической посадочной поверхностью наружного кольца. На рис. 45 изображен упорный шариковый подшипник, предназначенный для восприятия односторонней осевой нагрузки. Кольцо с внутренним диаметром d, монтируемое на вал и имеющее зазор с корпусом, называется тугим, кольцо с внутренним диаметром d 1, предназначенное для посадки в корпус и имеющее зазор с валом, называется свободным. Упорный подшипник может быть самоустанавливающимся за счет сферической поверхности базового торца. Упорные подшипники могут быть роликовыми. Для восприятия осевой нагрузки в обоих направлениях существуют двойные упорные подшипники качения.
Кроме перечисленных, существуют подшипники: игольчатые с витыми роликами, радиально-упорные шариковые с разъемным (внутренним или наружным) кольцом, с контактным уплотнением, с защитными шайбами и другие конструктивные разновидности. На рис. 46 показан подпятник качения, смонтированный из радиального и упорного шарикоподшипников качения. Для компенсации возможных перекосов вала под свободное кольцо упорного подшипника положена прокладка из мягкого металла или линолеума.
§ 20. СМАЗОЧНЫЕ МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ В МАШИНОСТРОЕНИИ (ДО ХУЯ МАСЛА)
Для уменьшения потерь энергии на преодоление трения, обеспечения износостойкости, отвода теплоты из зоны контакта, уменьшения шума при работе, удаления продуктов изнашивания и предохранения от коррозии применяют смазывание трущихся поверхностей. В зависимости от агрегатного состояния смазочные материалы бывают твердые (графит, слюда, дисульфид молибдена), пластичные (смазки литол, солидол, консталин, ЦИАТИМ, ВНИИНП), жидкие (вода, органические и минеральные масла) и газообразные (воздух, газы). Твердые смазочные материалы применяются в следующих случаях: – в условиях, когда жидкие и пластичные смазки неработоспособны (низкие или высокие температуры, глубокий вакуум, агрессивные среды) или недопустимы по технологическому процессу (электронные приборы и машины и др.); – в условиях редких перемещений при предотвращении контактной коррозии (соединения с натягом, посадочные поверхности передвижных шкивов и др.); – в условиях одноразового действия или очень малого общего срока службы. Наиболее распространены жидкие и пластичные смазочные материалы. Нередко к смазочному материалу для придания ему новых свойств добавляют другие вещества, называемые присадками, например, противозадирные, противоизносные, антикоррозионные и другие присадки. Пластичные смазочные материалы применяются в следующих случаях: – в открытых узлах трения; – в узлах с малой работой трения, допускающих длительную работу или выработку всего ресурса без смазки; – в трудно герметизируемых узлах трения; – в узлах трения, требущих надежной герметизации; – в труднодоступных узлах трения, требующих длительной работы без замены смазки; – в механизмах, работающих в широком диапазоне температур или режимов эксплуатации; – при длительной консервации деталей; – в подшипниках качения. Жидкие смазочные материалы применяются в следующих случаях: – зубчатые и червячные передачи, а также цилиндров и деталей паровых машин смазываются индустриальными и трансмиссионными маслами; – двигатели автомобилей и самолетов смазываются моторными маслами; – синтетические масла предназначены для работы в условиях высоких и низких температур; – подшипники насосов, турбин, гребных винтов смазываются водой; – для смазывания подшипников скольжения быстроходных валов применяют менее вязкие сорта масел; – для подшипников тихоходных валов и при ударных нагрузках применяют более вязкие сорта масел или пластичные смазочные материалы; – для смазывания подшипников качения. Газообразные смазочные материалы применяются в следующих случаях: – аэродинамические опоры в гироскопах, центрифугах, газовых турбинах, подшипниках машин для сжижения газов; – аэростатические опоры в испытательных устройствах, приборах, прецизионных машинах при невысоких скоростях; – в бесконтактных электромагнитных опорах при особо высоких скоростях вращения. Роликовые подшипники более требовательны к качеству смазки, чем шарикоподшипники.
|