Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

методом наименьших квадратов





Зависимость измеряемой величины у от условий опыта х может быть найдена графически, если нанести значения х и у на миллиметровую бумагу и построить плавную кривую так, чтобы точки равномерно распределились по обе стороны кривой

(рис. 1). Задача состоит в том, чтобы по результатам опытов построить такую кривую у = f(x), относительно которой разброс (отклонения) экспериментальных точек был бы минимальным.

Tеория вероятности показывает, что наилучшее приближение к истинной зависимости у = f(x) дает кривая, построенная методом наименьших квадратов. В этом случае сумма квадратов отклонений экспериментальных значений уi от кривой у = f(x) будет минимальна. Отсюда и происходит название данного метода обработки результатов эксперимента.

1. Рассмотрим применение метода наименьших квадратов для случая, когда между измеряемыми величинами х и у существует линейная зависимость

. (1)

 

Рис. 1. Метод наименьших квадратов

 

 

Пусть в результате эксперимента получено п различных значений величины уi, соответствующих различным значениям величины хi. Найдем коэффициент b, при котором экспериментальные точки уi будут иметь наименьшие отклонения Δ уi относительно прямой.

Отклонение каждого значения уi от прямой у = bх будет

. (2)

Составим сумму квадратов отклонений:

(3)

Отклонение (разброс) измеренных значений уi от функции у = f(x) будет минимальным, если

(4)

Дифференцирование (3) по переменной b (предположив, что все остальные величины постоянны) с учетом (4) дает

или (5)

Отсюда определяем искомый коэффициент b.

(6)

2. В случае линейной зависимости между величинами х и у, которая аппроксимируется прямой, не проходящей через начало координат,

y = a + bx, (7)

 

 

коэффициенты а и b могут быть вычислены по формулам

 

 

       
   
 


(8)

 

Пример: предположим, что мы провели эксперимент и получили данные, которые занесли в табл. 1.

 

Таблица 1

Номер измерения i          
xi 1, 0 1, 9 3, 1 4, 0 4, 9  
yi 1, 6 2, 5 3, 0 3, 7 4, 6

Для упрощения расчетов составим вспомогательную таблицу и заполним ее.

 

 

Таблица 2

Номер измерения i xi yi xi уi xi 2
  1, 0 1, 6 1, 6 1, 0
  1, 9 2, 5 4, 75 3, 61
  3, 1 3, 0 9, 3 9, 61
  4, 0 3, 7 14, 8 16, 0
  4, 9 4, 6 22, 54 24, 01
Σ 14, 9 15, 4 52, 99 54, 23

 

 

Рассчитаем коэффициенты а и b

     
 
 
 

 


Таким образом, уравнение прямой будет выглядеть следующим образом: у = 0, 928 + 0, 722 х.

Для построения отрезка прямой линии найдем две точки,

у 1= 0, 928. Вторую точку получим, подставив в уравнение прямой значение х, равное, например, 5.

у 2 = 0, 928 + 0, 722 5 = 4, 538.

На листе миллиметровой бумаги проведем оси координат, причем ось у проведем вертикально, а ось х – горизонтально.

 

 

Рис. 2

Выберем и нанесем на оси координат масштаб так, чтобы наши экспериментальные точки располагались на графике наилучшим образом – занимали на графике максимальную площадь. Нанесем на график экспериментальные точки и две точки у 1и у 2, рассчитанные нами (рис. 2). Для обозначения экспериментальных и «теоретических» точек используем разные обозначения (кружки, крестики, треугольники и т. п.).

Через две «теоретических» точки проведем отрезок прямой линии. При правильных расчетах линия пройдет на графике наилучшим образом, так, что экспериментальные точки будут располагаться справа и слева от прямой. Все построения желательно делать карандашом.

 

 

Список рекомендуемой литературы

 

1. Братухин Ю. К. Обработка результатов измерений: учеб. пособие / Ю.К.Братухин, Г.Ф.Путин, – Пермь.: Изд-во Перм. гос. ун-та, 1988.– 44 с.

2. Колесниченко В.И. Обработка и представление результатов эксперимента. / В.И.Колесниченко – Пермь; – Перм.. гос. техн. ун-т, 2000. – 74 с.

 

3. Сборник методических рекомендаций к лабораторным работам по физике. 1. Механика: учеб.пособие / под ред. В.М. Коровина, – Перм. гос. ун-т. – Пермь, 1997.- 87 с.

4. Зайдель А.Н. Ошибки измерений физических величин: учеб. пособие / А.Н.Зайдель. – Л.: Наука, 1985.– 108 с.

5. Общий физический практикум. Механика / Под ред. А.Н. Матвеева, Д.Ф. Киселева. – М.: Изд-во МГУ, 1991.– 272 с.

6. Савельев И. В. Курс физики. Т. 1. Механика: учеб. пособие / И.В. Савельев. – М.: Наука, 1989.– 496с.

7. Сивухин Д.В. Общий курс физики. Т.1.: учеб. пособие / Д.В.Сивухин. – М.: Наука, 1989.– 576 с.

8. Общая физика. Ч.2. Молекулярная физика и термодинамика: учеб. пособие / под ред. Ю.Л. Райхера, Перм. политехн. ин-т. – Пермь, 1998. – 81с.

Содержание

Основные правила работы в лабораториях кафедры прикладной

физики……………………………………………………………………3

Введение в обработку результатов измерений… ………………….....6

Лабораторная работа № 1. Статистика времени реакции человека….16

Лабораторная работа № 2. Определение плотности твердого тела….19

Лабораторная работа № 3. Измерение ускорения свободного

падения с помощью машины Атвуда…………………………………23

Лабораторная работа № 4. Маятник Обербека……………………….32

Лабораторная работа № 5. Физический маятник…………………….44

Лабораторная работа № 6. Определение момента инерции тел

методом колебаний. Теорема Штейнера……………………………..52

Лабораторная работа № 7. Изучение прецессии гироскопа…………63

Лабораторная работа № 8. Определение коэффициента вязкости

жидкости методом Стокса…………………………………………….70

Лабораторная работа № 9. Измерение коэффициента трения………81

Лабораторная работа № 10. Исследование упругих колебаний…… 89

Приложение……………………………………………………………96

Список рекомендуемой литературы……………………………… 100







Дата добавления: 2014-10-29; просмотров: 551. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия