Задания для отчета по лабораторной работе. 1. К вертикальной проволоке длиной L = 5 м и площадью поперечного сечения S = 2 мм2 подвешен груз массой m = 5,1 кг
1. К вертикальной проволоке длиной L = 5 м и площадью поперечного сечения S = 2 мм2 подвешен груз массой m = 5, 1 кг. В результате проволока удлинилась на x = 0, 6 мм. Найти модуль упругости (модуль Юнга) материала проволоки. 2. К стальному стержню длиной L = 3 м и диаметром d = 2 см подвешен груз массой m = 2, 5 103 кг. Определить напряжение σ в стержне. Модуль Юнга стали E = 220 ГПа (ГПа – ГигаПаскаль). 3. По условиям предыдущей задачи определить относительное ε и абсолютное удлинение x стержня. 4. Проволока длиной l = 2 м и диаметром d = 1 мм натянута практически горизонтально. Когда к середине проволоки подвесили груз массой m = 1 кг, проволока растянулась настолько, что точка подвеса опустилась на h = 4 см. Определить модуль Юнга E материала проволоки. 5. Тонкий стержень одним концом закреплен, к другому концу приложен момент силы M = 1 кН м. Определить угол φ закручивания стержня, если постоянная кручения C = 120 кН м /рад. 6. Коэффициент линейного теплового расширения стали равен 12 10-6 К-1, модуль Юнга E =220 ГПа (ГигаПаскаль). Какое давление p необходимо приложить к торцам стального цилиндра, чтобы длина его оставалась неизменной при повышении температуры на 100° С. 7. Стальной канат диаметром 9 мм может выдержать вес неподвижной кабины лифта. Какой диаметр должен иметь канат, если кабина лифта может иметь ускорение до 8 g. 8. Насколько вытягивается стержень из железа (модуль Юнга Е =220 ГПа), подвешенный за один конец под действием собственного веса? 9. По условиям предыдущей задачи определить, насколько меняется объем стержня. 10. Какую работу A надо совершить, чтобы растянуть на x = 1 мм стальной стержень (E = 220 ГПа) длиной l = 1 м и площадью поперечного сечения S = 1 см2. 11. Точка совершает колебания с частотой ω и коэффициентом затухания β. Найти амплитуду скорости точки как функцию времени, если в момент t = 0 амплитуда ее смещения равна a 0. 12. По условиям предыдущей задачи найти амплитуду скорости точки как функцию времени, если в момент t = 0 смещение x(0) = 0 и проекция скорости vx = v0. 13. Математический маятник совершает колебания в среде, для которой логарифмический декремент затухания θ 0 = 1, 5. Каким будет значение θ, если сопротивление среды увеличить в n = 2 раза?
14. По условиям предыдущей задачи определить, во сколько раз следует увеличить сопротивление среды, чтобы колебания стали невозможны? 15. К пружине подвесили груз, и она растянулась на Δ x = 9, 8 см. Логарифмический декремент затухания θ = 3, 1.С каким периодом будет колебаться груз в вертикальном направлении? 16. Амплитуда затухающих колебаний маятника за время t 1 = 5 мин уменьшилась в два раза. За какое время t 2, считая от начального момента, амплитуда уменьшится в восемь раз? 17. За время t = 8 мин амплитуда затухающих колебаний маятника уменьшилась в три раза. Определить коэффициент затухания β. 18. Логарифмический декремент затухания колебаний маятника равен 0, 003. Определить число N полных колебаний, которые должен сделать маятник, чтобы амплитуда уменьшилась в два раза? 19. Амплитуда колебаний маятника длиной l = 1 м за время t = 10 мин уменьшилась в два раза. Определить логарифмический декремент затухания β. 20. Определить период T затухающих колебаний, если период T 0 собственных колебаний системы равен 1 с и логарифмический декремент θ = 0, 628.
|