Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общие подходы к оценке риска





При оценке риска следует опираться на концепцию приемлемого риска или принцип As Low As Reasonably Achievable. Это означает, что затраты на снижение риска не должны превышать величину потерь, обусловленных тем или иным фактором риска («чистый эффект»).

Рассматривая риск с точки зрения его оценки, необходимо решить следующие задачи:

- описать все возможные в будущем варианты развития событий, соответствующие данному риску (возможные исходы принятия решений или случайные события);

- определить вероятности каждого из этих вариантов (случайных событий).

Среднее ожидаемое значение (математическое ожидание) случайной величины Х выражается в денежных единицах, обозначается МХ и вычисляется как средневзвешенное для всех различных ее значений, где вероятность каждого значения используется в качестве весового коэффициента. Рассчитывается как:

, (5.1)

где eI – значение случайной величины Х в ситуации i (i=1, …, k), pi – вероятность наступления ситуации i.

Среднеквадратическое отклонение - наиболее распространенный показатель оценки уровня риска. Определяется по формуле:

, (5.2)

где i - число вариантов действий (развития ситуации); - расчетный доход (расчетные потери) по каждому из вариантов; - средний ожидаемый доход (математическое ожидание, МХ); Pi - вероятность наступления варианта i.

Пример расчета математического ожидания показан в таблице 5.2. Имеются данные о проектах А и В и вероятных вариантах развития ситуации.

Таблица 5.2

Расчетные данные по проектам и вариантам развития ситуации

Вариант, i Проект А Проект В
  Доход, ε Вероятность, Pi Ожидаемый доход (ε * Pi) Доход, ε Вероятность, Pi Ожидаемый доход (ε * Pi)
Благоприятный   0, 25     0, 20  
Средний   0, 5     0, 60  
Неблагоприятный   0, 25     0, 20  
В среднем ()   1, 0     1, 0  

 

Расчет среднеквадратического отклонения показан в таблице 5.3.

Таблица 5.3

Среднеквадратическое отклонение по проектам

Проект Вариант Доход, ε Pi s
А Благоприятный     +150   0, 25    
Средний     +50   0, 5    
Неблагоприятный     -250   0, 25    
В среднем         1, 0    
В Благоприятный     +350   0, 2    
Средний         0, 6    
Неблагоприятный     -350   0, 2    
В среднем         1, 0    

 

Коэффициент вариации - это соотношение риска и дохода по проекту. Чем он выше, тем более рискованным является проект. Коэффициент вариации позволяет определить уровень риска, если показатели средних ожидаемых доходов по проектам различны.

. (5.3)

Важным показателем, характеризующим уровень риска, также выступает бета-коэффициент. Он характеризует индивидуальный уровень систематического риска, связанный с вложениями в конкретные активы (проекты, предприятия). Значение бета-коэффициента, большее 1, означает, что риск инвестирования в конкретный актив (измеряемый среднеквадратическим отклонением) выше среднего риска по рынку, а следовательно, владельцы актива вправе ожидать от него и большей доходности. Бета-коэффициент рассчитывается с помощью регрессионного анализа, для чего используется следующая формула:

, (5.4)

где p(ri, rm) – коэффициент корреляции между доходностью конкретного актива i и доходностью рынка в целом (m). Коэффициент корреляции указывает на наличие и тесноту связи.

Другой метод расчета бета-коэффициента возможен через ковариацию доходностей рынка и конкретного актива cov(ri, rm): .

Коэффициент в зарубежной практике определяется на основе обработки большого статистического материала о ценах на рынке капитала и фактической эффективности различных инвестиционных проектов авторитетными рыночными институтами.







Дата добавления: 2014-10-29; просмотров: 601. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия