Примеры решения задач. Пример 1. Платформа в виде сплошного диска радиусом R=1,5 м и массой m1=180 кг вращается около вертикальной оси с частотой n=10 мин-1
Пример 1. Платформа в виде сплошного диска радиусом R=1, 5 м и массой m1=180 кг вращается около вертикальной оси с частотой n=10 мин-1. В центре платформы стоит человек массой m2=60 кг. Какую линейную скорость u относительно пола помещения будет иметь человек, если он перейдет на край платформы? Решение. Согласно условию задачи, момент внешних сил относительно оси вращения z, совпадающей с геометрической осью платформы, можно считать равным нулю. При этом условии проекция Lz момента импульса системы платформа-человек остается постоянной: const, (1) где Jz - момент инерции платформы с человеком относительно оси z; w - угловая скорость платформы. Момент инерции системы равен сумме моментов инерции тел, входящих в состав системы, поэтому в начальном состоянии а в конечном состоянии . С учетом этого равенство (1) примет вид (2) где значения моментов инерции J1 и J2 платформы и человека соответственно относятся к начальному состоянию системы; и - к конечному. Момент инерции платформы относительно оси z при переходе человека не изменяется: . Момент инерции человека относительно той же оси будет изменяться. Если рассматривать человека как материальную точку, то его момент инерции J2 в начальном состоянии (в центре платформы)можно считать равным нулю. В конечном состоянии (на краю платформы) момент инерции человека Подставим в формулу (2) выражения моментов инерции, начальной угловой скорости вращения платформы с человеком (w = 2pn) и конечной угловой скорости (w' = u/R, где u - скорость человека относительно пола): После сокращения на R2 и простых преобразований находим скорость Произведем вычисления: м/с.
Пример 2. Частица массой m = 0, 01 кг совершает гармонические колебания с периодом Т = 2с. Полная энергия колеблющейся частицы Е = 0, 1 мДж. Определить амплитуду А колебаний и наибольшее значение силы Fmax, действующей на частицу. Решение. Для определения амплитуды колебаний воспользуемся выражением полной энергии частицы: где w = 2p/Т. Отсюда амплитуда (1) Так как частица совершает гармонические колебания, то сила, действующая на нее, является квазиупругой и, следовательно, может быть выражена соотношением F = -kx, где k - коэффициент квазиупругой силы; х - смещение колеблющейся точки. Максимальной сила будет при максимальном смещении xmax, равном амплитуде: Fmax = kA. (2) Коэффициент k выразим через период колебаний: k = mw2 = m× 4p2/T2. (3) Подставив выражения (1) и (3) и (2) и произведя упрощения, получим Произведем вычисления: 0, 045 м = 45 мм;
Пример 3. Складываются два колебания одинакового направления, выраженные уравнениями где А 1 = 3 см, А 2 = 2 см, t 1 = 1/6 с, t 2 = 1/3 с, Т = 2 с. Построить векторную диаграмму сложения этих колебаний и написать уравнение результирующего колебания. Решение. Для построения векторной диаграммы сложения двух колебаний одного направления надо фиксировать какой-либо момент времени. Обычно векторную диаграмму строят для момента времени t = 0. Преобразовав оба уравнения к канонической форме х = A cos (wt+j), получим Отсюда видно, что оба складываемых гармонических колебания имеют одинаковую циклическую частоту . Начальные фазы первого и второго колебаний соответственно равны Произведем вычисления: с-1;
Изобразим векторы А1 и А2. Для этого отложим отрезки длиной А1 = 3 см и А2 = 2 см под углами j1 = 30о и j2 = 60о к оси 0х. Результирующее колебание будет происходить с той же частотой w и амплитудой А, равной геометрической сумме амплитуд А1 и А2: А = А1 + А2. Согласно теореме косинусов: Начальную фазу результирующего колебания можно также определить непосредственно из векторной диаграммы (рис. 3):
Произведем вычисления: см = 4, 84 см; или j = 0, 735 рад. Так как результирующее колебание является гармоническим, имеет ту же частоту, что и слагаемые колебания, то его можно записать в виде где А = 4, 84 см, w = 3, 14 с-1, j = 0, 735 рад.
Таблица вариантов для задания № 2
151. Шарик массой т = 60 г, привязанный к концу нити длиной l1 =1, 2 м, вращается с частотой п1=2с-1, опираясь на горизонтальную плоскость. Нить укорачивается, приближая шарик к оси до расстояния l2 =0, 6 м. С какой частотой п2 будет при этом вращаться шарик? Какую работу А совершает внешняя сила, укорачивая нить? Трением шарика о плоскость пренебречь. 152. По касательной к шкиву маховика в виде диска диаметром D = 75 см и массой т = 40 кг приложена сила F = 1 кН. Определить угловое ускорение e и частоту вращения п маховика через время t = 10 с после начала действия силы, если радиус r шкива равен 12 см. Силой трения пренебречь. 153. На обод маховика диаметром D = 60 см намотан шнур, к концу которого привязан груз массой т = 2 кг. Определить момент инерции J маховика, если он, вращаясь равноускоренно под действием силы тяжести груза, за время t = 3 с приобрел угловую скорость w = 9 рад/с. 154. Нить с привязанными к ее концам грузами массами т1 = 50 г и m 2 = 60 г перекинута через блок диаметром D =4 см. Определить момент инерции J блока, если под действием силы тяжести грузов он получил угловое ускорение e = 1, 5 рад/с2. Трением и проскальзыванием нити по блоку пренебречь. 155. Стержень вращается вокруг оси, проходящей через его середину, согласно уравнению j= At + Bt3, где А = 2 рад/с, В = 0, 2 рад/с3. Определить вращающий момент М, действующий на стержень через время t = 2 с после начала вращения, если момент инерции стержня J =0, 048 кг× м2 156. По горизонтальной плоскости катится диск со скоростью V = 8 м/с. Определить коэффициент сопротивления, если диск, будучи предоставленным самому себе, остановился, пройдя путь s = 18 м. 157. Определить момент силы М, который необходимо приложить к блоку, вращающемуся с частотой n = 12c-l, чтобы он остановился в течение времени Dt = 8 с. Диаметр блока D = 30 см. Массу блока т = 6 кг считать равномерно распределенной по ободу. 158. Блок, имеющий форму диска массой т = 0, 4 кг, вращается под действием силы натяжения нити, к концам которой подвешены грузы массами т1 = 0, 3 кг и т2 = 0, 7 кг. Определить силы натяжения Т1 и Т2 нити по обе стороны блока. 159. К краю стола прикреплен блок. Через блок перекинута невесомая и нерастяжимая нить, к концам которой прикреплены грузы. Один груз движется по поверхности стола, а другой - вдоль вертикали вниз. Определить коэффициент f трения между поверхностями груза и стола, если массы каждого груза и масса блока одинаковы и грузы движутся с ускорением а = 5, 6 м/с2. Проскальзыванием нити по блоку и силой трения, действующей на блок, пренебречь. 160. К концам легкой и нерастяжимой нити, перекинутой через блок, подвешены грузы массами т1 = 0, 2 кг и т2 = 0, 3 кг. Во сколько раз отличаются силы, действующие на нить по обе стороны от блока, если масса блока m = 0, 4 кг, а его ось движется вертикально вверх с ускорением а = 2 м/с2? Силами трения и проскальзывания нити по блоку пренебречь. 161. На скамье Жуковского сидит человек и держит на вытянутых руках гири массой т = 5 кг каждая. Расстояние от каждой гири до оси скамьи l 1 = 70 см. Скамья вращается с частотой п1 = 1с-1. Как изменится частота вращения скамьи и какую работу А произведет человек, если он сожмет руки так, что расстояние от каждой гири до оси уменьшится до l2 = 20 см? Момент инерции человека и скамьи (вместе) относительно оси J = 2, 5 кг× м2. 162. На скамье Жуковского стоит человек и держит в руках стержень вертикально по оси скамьи. Скамья с человеком вращается с угловой скоростью w1= 4 рад/с. С какой угловой скоростью w2 будет вращаться скамья с человеком, если повернуть стержень так, чтобы он занял горизонтальное положение? Суммарный момент инерции человека и скамьи J =5 кг× м2. Длина стержня l =1, 8 м, масса m==6 кг. Считать, что центр масс стержня с человеком находится на оси платформы. 163. Платформа в виде диска диаметром D = 3 м и массой m1=180 кг может вращаться вокруг вертикальной оси. С какой угловой скоростью w1 будет вращаться эта платформа, если по ее краю пойдет человек массой m2 = 70 кг со скоростью V=1, 8 м/с относительно платформы? 164. Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек. На какой угол j повернется платформа, если человек пойдет вдоль края платформы и, обойдя ее, вернется в исходную (на платформе) точку? Масса платформы m1 = 280 кг, масса человека m2 = 80 кг. 165. На скамье Жуковского стоит человек и держит в руке за ось велосипедное колесо, вращающееся вокруг своей оси с угловой скоростью w1=25 рад/с. Ось колеса расположена вертикально и совпадает с осью скамьи Жуковского. С какой скоростью w2 станет вращаться скамья, если повернуть колесо вокруг горизонтальной оси на угол a=90°? Момент инерции человека и скамьи J равен 2, 5 кг× м2, момент инерции колеса J0 = 0, 5 кг× м2. 166. Однородный стержень длиной l =1, 0 м может свободно вращаться вокруг горизонтальной оси, проходящей через один из его концов. В другой конец абсолютно неупруго ударяет пуля массой т=7 г, летящая перпендикулярно стержню и его оси. Определить массу М стержня, если в результате попадания пули он отклонится на угол a=60°. Принять скорость пули V=360 м/с. 167. На краю платформы в виде диска, вращающейся по инерции вокруг вертикальной оси с частотой n1=8 мин--1, стоит человек массой m1=70 кг. Когда человек перешел в центр платформы, она стала вращаться с частотой п2=10 мин-1. Определить массу т2 платформы. Момент инерции человека рассчитывать как для материальной точки. 168. На краю неподвижной скамьи Жуковского диаметром D=0, 8 м и массой m1=6 кг стоит человек массой m2=60 кг. С какой угловой скоростью w начнет вращаться скамья, если человек поймает летящий на него мяч массой m=0, 5 кг? Траектория мяча горизонтальна и проходит на расстоянии r=0, 4 м от оси скамьи. Скорость мяча V=5 м/с. 169. Горизонтальная платформа массой m1=150 кг вращается вокруг вертикальной оси, проходящейчерезцентр платформы, с частотой n=8 мин--1. Человек массой т2= 70 кг стоит при этом на краю платформы. С какой угловой скоростью w начнет вращаться платформа, если человек перейдет от края платформы кеецентру? Считать платформу круглым, однородным диском, а человека — материальной точкой. 170. Однородный стержень длиной l =1, 0 м и массой M1=0, 7 кг подвешен на горизонтальной оси, проходящей через верхний конец стержня. В точку, отстоящую от оси на 2/3 l, абсолютно упруго ударяет пуля массой m = 5 г, летящая перпендикулярно стержню и его оси. После удара стержень отклонился на угол a=60°. Определить скорость пули. 171. На стержне длиной l =30 см укреплены два одинаковых грузика: один — в середине стержня, другой — на одном из его концов. Стержень с грузами колеблется около горизонтальной оси, проходящей через свободный конец стержня. Определить приведенную длину L и период Т простых гармонических колебаний данного физического маятника. Массой стержня пренебречь. 172. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, уравнения которых х=A1 sinw t и y=A2 cosw t, где A1=8 см, А2=4 см, w =2 с-1. Написать уравнение траектории и построить ее. Показать направление движения точки. 173. Точка совершает простые гармонические колебания, уравнение которых x=Asinwt, где A=5 см, w =2c-1. В момент времени, когда точка обладала потенциальной энергией П=0, 1 мДж, на нее действовала возвращающая сила F=5 мН. Найти этот момент времени t. 174. Определить частоту n простых гармонических колебаний диска радиусом R=20 см около горизонтальной оси, проходящей через середину радиуса диска перпендикулярно его плоскости. 175. Определить период Т простых гармонических колебаний диска радиусом R =40 см около горизонтальной оси, проходящей через образующую диска. 176. Определить период Т колебаний математического маятника, если его модуль максимального перемещения Dr = 18 см и максимальная скорость Vmax=16 см/с. 177. Материальная точка совершает простые гармонические колебания так, что в начальный момент времени смещение x0 = 4 см, а скорость V0=10 см/с. Определить амплитуду А и начальную фазу j0 колебаний, если их период Т=2 с. 178. Складываются два колебания одинакового направления и одинакового периода: х1=А1 sinw1t и x2 =A2sinw2(t+t), где А1 = А2 = 3см, w1 = w2 = pc-1, t=0, 5 с. Определить амплитуду А и начальную фазу j0 результирующего колебания. Написать его уравнение. Построить векторую диаграмму для момента времени t=0. 179. На гладком горизонтальном столе лежит шар массой M=200 г, прикрепленный к горизонтально расположенной легкой пружине с жесткостью k= 500 Н/м. В шар попадает пуля массой m=10 г, летящая со скоростью V=300 м/с, и застревает в нем. Пренебрегая перемещением шара во время удара и сопротивлением воздуха, определить амплитуду А и период T колебаний шара. 180. Шарик массой m=60 г колеблется с периодом T=2 с. В начальный момент времени смещение шарика x0=4, 0 см и он обладает энергией E=0, 02 Дж. Записать уравнение простого гармонического колебания шарика и закон изменения возвращающей силы с течением времени. 181. Частица движется со скоростью u = с/3, где с — скорость света в вакууме. Какую долю энергии покоя составляет кинетическая энергия частицы? 182. Протон с кинетической энергией Т = 3 ГэВ при торможении потерял треть этой энергии. Определить, во сколько раз изменился релятивистский импульс a частицы. 183. При какой скорости b (в долях скорости света) релятивистская масса любой частицы вещества в п = 3 раза больше массы покоя? 184. Определить отношение релятивистского импульса р-электрона с кинетической энергией Т = 1, 53 МэВ.к комптоновскому импульсу тос электрона. 185. Скорость электрона u = 0, 8 с (где с — скорость света в вакууме). Зная энергию покоя электрона в мегаэлектрон-вольтах, определить в тех же единицах кинетическую энергию Т электрона. 186. Протон имеет импульс р = 469 МэВ/с*. Какую кинетическую энергию необходимо дополнительно сообщить протону, чтобы его релятивистский импульс возрос вдвое? 187. Во сколько раз релятивистская масса т электрона, обладающего кинетической энергией Т = 1, 53 МэВ, больше массы покоя m0? 188. Какую скорость b (в долях скорости света) нужно сообщить частице, чтобы ее кинетическая энергия была равна удвоенной энергии покоя? 189. Релятивистский электрон имел импульс p1 = тос. Определить конечный импульс этого электрона (в единицах тос), если его энергия увеличилась в п == 2 раза. 190. Релятивистский протон обладал кинетической энергией, равной энергии покоя. Определить, во сколько раз возрастет его кинетическая энергия, если его импульс увеличится в п = 2 раза.
|