Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

М.13.2*. Сколько неизвестных компонентов напряжений мы имеем в случае плоской задачи, осесимметричной задачи, пространственной задачи в общем случае?





В случае плоской задачи мы имеем три неизвестных компонента напряжений, в случае осесимметричной задачи четыре, а для пространственной задачи в общем случае шесть компонентов напряжений.

М.13.3*. Какие дополнительные зависимости привлекаются к уравнениям равновесия в теории предельного равновесия сыпучей среды в плоской, осесимметричной и пространственной задачах и сколько этих дополнительных зависимостей?

К двум уравнениям равновесия в случае плоской задачи привлекается одно условие, связывающее компоненты напряжений, - условие предельного равновесия. В случае осесимметричной задачи к двум уравнениям равновесия (проекции на оси координат) привлекается также одно условие предельного равновесия, а дополнительным, поскольку компонентов в уравнениях четыре, является условие равенства между собой двух главных напряжений (промежуточное равно минимальному или максимальному). В случае пространственной задачи мы имеем три уравнения равновесия и одно уравнение предельного равновесия - таким образом, не хватает двух уравнений.

М.13.4*. В каких случаях общая система уравнений теории предельного равновесия является замкнутой? В каких случаях и сколько уравнений не хватает для получения замкнутости системы? Что называется условием " полной" и " неполной" сыпучести?

В случае плоской задачи система оказывается полностью замкнутой. В случае осесимметричной задачи не хватает одного уравнения и привлекается условие " полной сыпучести" путем приравнивания промежуточного главного напряжения минимальному или максимальному, после чего система становится замкнутой. Если не привлечь этого условия, то система будет незамкнутой (неполной). В случае пространственной задачи не хватает двух уравнений и система оказывается незамкнутой.

М.13.5*. Чему равен порядок системы дифференциальных уравнений в частных производных? Какой порядок имеет система дифференциальных уравнений теории упругости (плоская задача) и теории предельного равновесия сыпучей среды?

Порядок системы дифференциальных уравнений в частных производных равен сумме порядков входящих в нее уравнений. Система дифференциальных уравнений теории упругости имеет четвертый порядок, а система уравнений теории предельного равновесия - второй порядок, так как уравнение предельного равновесия включает только компоненты напряжений, но не их производные. Это уравнение второй степени, но нулевого порядка.

М.13.6. Что дают нам произвольные постоянные интегрирования и произвольные функции интегрирования, получаемые в результате решения основной системы уравнений теории упругости и теории предельного равновесия сыпучей среды?

Произвольные постоянные интегрирования позволяют из общего решения системы обыкновенных дифференциальных уравнений получить частное решение, удовлетворяющее краевым условиям. Произвольные функции, получающиеся в результате интегрирования системы дифференциальных уравнений в частных производных, позволяют получить частное решение, удовлетворяющее граничным условиям рассматриваемой задачи. В теории упругости и в теории предельного равновесия это - напряжения на границе области. Вдоль участка границы возможно задать два граничных условия - в теории предельного равновесия это нормальное и тангенциальное напряжения на границе. В теории упругости граничные условия могут быть заданы в напряжениях или перемещениях, могут быть и смешанного типа.

М.13.7*. Чем отличаются дифференциальные уравнения гиперболического, параболического и эллиптического типов? Что называется характеристикой дифференциального уравнения и как ее найти? Сколько существует характеристик?

Характеристикой дифференциального уравнения называется линия на плоскости, вдоль которой частные производные не могут быть однозначно определены (детерминант оказывается равным нулю). Характеристики системы дифференциальных уравнений могут быть найдены путем приравнивания всех детерминантов системы нулю. Система гиперболического типа (теория предельного равновесия сыпучей среды) имеет два семейства действительных характеристик, система параболического типа (теория фильтрационной консолидации) - одно и система эллиптического типа (теория упругости) - два семейства мнимых характеристик.

М.13.8*. С чем совпадают характеристики системы дифференциальных уравнений теории предельного равновесия сыпучей среды? Сколько систем характеристик мы имеем в плоской задаче теории предельного равновесия?

Характеристики системы дифференциальных уравнений теории предельного равновесия сыпучей среды совпадают с линиями скольжения. В плоской задаче мы имеем два семейства характеристик, следовательно, два семейства линий скольжения, вдоль которых выполняется условие .







Дата добавления: 2014-10-29; просмотров: 681. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия