Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

М.13.20*. Где располагается "особая точка" и каковы ее свойства?





" Особая точка" (cм.рис.М.13.18, точка О) располагается в месте, где кончается нагрузка и начинается пригрузка, то есть имеет место скачок в величине усилий, приложенных на границе. Особая точка обладает тем свойством, что при подходе к ней по различным лучам мы получаем различие напряжения от наибольшего (нагрузка) до наименьшего (пригрузка). Таким образом, в особой точке имеет место многозначность напряжений.

М.13.21. Нужны ли эксперименты для правильной постановки задачи с использованием основных уравнений теории предельного равновесия сыпучей среды?

Да, нужны не только для проверки получаемых величин напряжений, как обычно, но и для постановки, связанной с неоднозначностью (двойственностью) решений теории предельного равновесия сыпучей среды.

М.13.22. Какие инженерные задачи рассматриваются в теории предельного равновесия сыпучей среды?

В теории предельного равновесия обычно рассматриваются следующие задачи (рис.М.13.22) с целью определения:

1) несущей способности основания (зависимости нагрузки от пригрузки или наоборот);

2) давления грунта на подпорную стенку - активного и пассивного;

3) устойчивости откоса заданного очертания (необходимой пригрузки сверху, обеспечивающей предельное состояние);

4) формы предельно устойчивого откоса;

5) формы свода обрушения связного грунта при подземной проходке;

6) предельного давления в грунтовой трубе.

Рис.М.13.22. Задачи, решаемые по теории предельного равновесия сыпучей среды






Дата добавления: 2014-10-29; просмотров: 559. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия