Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

М.13.20*. Где располагается "особая точка" и каковы ее свойства?





" Особая точка" (cм.рис.М.13.18, точка О) располагается в месте, где кончается нагрузка и начинается пригрузка, то есть имеет место скачок в величине усилий, приложенных на границе. Особая точка обладает тем свойством, что при подходе к ней по различным лучам мы получаем различие напряжения от наибольшего (нагрузка) до наименьшего (пригрузка). Таким образом, в особой точке имеет место многозначность напряжений.

М.13.21. Нужны ли эксперименты для правильной постановки задачи с использованием основных уравнений теории предельного равновесия сыпучей среды?

Да, нужны не только для проверки получаемых величин напряжений, как обычно, но и для постановки, связанной с неоднозначностью (двойственностью) решений теории предельного равновесия сыпучей среды.

М.13.22. Какие инженерные задачи рассматриваются в теории предельного равновесия сыпучей среды?

В теории предельного равновесия обычно рассматриваются следующие задачи (рис.М.13.22) с целью определения:

1) несущей способности основания (зависимости нагрузки от пригрузки или наоборот);

2) давления грунта на подпорную стенку - активного и пассивного;

3) устойчивости откоса заданного очертания (необходимой пригрузки сверху, обеспечивающей предельное состояние);

4) формы предельно устойчивого откоса;

5) формы свода обрушения связного грунта при подземной проходке;

6) предельного давления в грунтовой трубе.

Рис.М.13.22. Задачи, решаемые по теории предельного равновесия сыпучей среды






Дата добавления: 2014-10-29; просмотров: 559. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия